Peptide-based approaches to treat asthma, arthritis, other autoimmune diseases and pathologies of the central nervous system

Kristin Hauff1, 2, Christina Zamzow2, Warren J. Law1, 3, Jimmy De Melo1, 4, Kieron Kennedy1 and Marek Los1, 3

1 Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, Canada
2 Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
3 Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
4 Department of Anatomy, University of Manitoba, Winnipeg, Canada

Source of support: by grants from the MHRC, MMSF, and DFG (Lo 823/3-1).
M. Los is supported by CRC “New Cancer Therapy Development” program.

Summary

In this review we focus on peptide- and peptidomimetic-based approaches that target autoimmune diseases and some pathologies of the central nervous system. Special attention is given to asthma, allergic rhinitis, osteoarthritis, and Alzheimer’s disease, but other related pathologies are also reviewed, although to a lesser degree. Among others, drugs like Diacerhein and its active form Rhein, Pralnacasan, Anakinra (Kineret), Omalizumab, an antibody “BION-1”, directed against the common β-chain of cytokine receptors, are described below as well as attempts to target β-amyloid peptide aggregation. Parts of the review are also dedicated to targeting of pathologic conditions in the brain and in other tissues with peptides as well as methods to deliver larger molecules through the “blood-brain barrier” by exploring receptor-mediated transport, or elsewhere in the body by using peptides as carriers through cellular membranes. In addition to highlighting current developments in the field, we also propose, for future drug targets, the components of the inflammasome protein complex, which is believed to initiate the activation of caspase-1 dependent signaling events, as well as other pathways that signal inflammation. Thus we discuss the possibility of targeting inflammasome components for negative or positive modulation of an inflammatory response.

Key words: Anakinra • BION-1 • β-amyloid • Diacerhein • Kineret • Omalizumab • osteoarthritis • Pralnacasan • Rhein • secretase • Zafirlukast

Author’s address: Marek Los, M.D. Ph.D., Manitoba Institute of Cell Biology, CancerCare Manitoba, ON6010-675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada, tel.: +1 204 787 2294, fax: +1 204 787 2190, e-mail: Losmj@cc.umanitoba.ca
INTRODUCTION

Peptides derived from critical interaction or cleavage sites are the preferred leads (starting points) for the development of new drugs. In one of the recent issues we discussed in detail recently developed peptide-derived anticancer drugs as well as attempts to selectively target cancer cells using peptide-based approaches\(^8\). In this review we summarize the progress in three other areas that strongly rely on peptide-based pharmacologic innovations, namely: 1) asthma and autoimmune diseases, 2) pathologies of the central nerve system (CNS), and finally, 3) novel peptide-based strategies to deliver larger molecules into mammalian cells. These areas of pharmacologic development, although very different, all frequently use peptides as starting points for the development of pharmaco-active substances.

In the following sections we will discuss recent developments that target adverse inflammatory responses using peptide-derived molecules or antibodies directed against caspase-1 or other elements of the inflammatory process. This will be followed by a discussion of peptide-based approaches to treat pathologies of the central nervous system. Finally, we will reveal recent developments of peptides that have the capacity to transport much larger molecules into mammalian cells.

CASPASES AND THE INFLAMMASOME

Several peptide-based inhibitors of inflammatory caspases have been developed in recent years in attempts to modulate the inflammatory response\(^6\). The group of inflammatory caspases includes human caspase-1/interleukin-1\(\beta\)-converting enzyme (ICE), caspase-4, and caspase-5. Inflammatory caspases have so far only been found in vertebrates. All mammalian caspases have so-called CARD (caspase recruitment domain) interaction motifs at their N-terminus, followed by the enzymatic domains\(^1\). Although inflammatory caspases may be involved, to some degree, in programmed cell death\(^5\), they are primarily activated by inflammatory stimuli. The inflammatory response, like apoptosis\(^2\), is intended to keep a healthy organism in a delicate balance. Many viruses, however, have developed mechanisms to evade inflammatory caspases and components of apoptotic pathways in order to disarm the inflammatory response against them\(^3\). Learning more about how viruses accomplish this task could lead to interesting future targets for the development of peptidomimetics.

The key components and events that govern the activation of inflammatory caspases have recently been described (reviewed in\(^8\)). According to the model, yet to be defined intracellular signals triggered by inflammatory stimuli bring about the formation of a multi-protein complex called the “inflammasome” (Fig. 1). The core components of the complex are caspase-1 and a NALP family member. Depending on the function and composition, the inflammasome may signal either inflammation or apoptosis or both events simultaneously. Other components that are found in some inflammasomes are ASC, CARDINAL, Ipaf, and caspase-5\(^8\). The inflammasome provides multiple potential targets for modulation that may lead to future therapies for some of the many diseases resulting from improper regulation of inflammation.

Figure 1. Inflammasome, the intracellular sensor of inflammatory stimuli that leads to the proteolytic activation of IL-1\(\beta\) and IL-18. Yet to be identified bacterial or viral components trigger the activation of the inflammasome. The NOD-LRR family member NALP1 forms the backbone of this type of inflammasome. The other components include ASC, a small adaptor protein with CARD domain, and two pro-caspases. Pro-caspase-5 and NALP1 interact directly through the CARD domains, whereas pro-caspase-1 interacts directly with ASC (CARD-CARD interaction). The PYD (Pyrin domain) of ASC connects with the other end of NALP1. These interactions bring both caspase domains into a proximity that probably leads to proteolytic cross-activation of both\(^8\). To the right side of the scheme we indicate some of the new anti-inflammatory drugs that are discussed in greater detail in the text.

INHIBITION OF CYTOKINE PROTEOLYTIC MATURATION, A PROMISING NEW APPROACH FOR THE TREATMENT OF OSTEOARTHRITIS AND OTHER INFLAMMATORY DISEASES

Osteoarthritis (OA) is a common multifactorial arthropathy that involves the slow progressive
destruction of articular cartilage in the joints. An imbalance between synthetic and destructive processes in the cartilage leads to degeneration of the articular cartilage, affecting in a large part the extracellular matrix (ECM). Since the ECM is what gives the cartilage its biomechanical properties, an alteration in the ECM of OA patients leads to mechanical joint failure.

Cytokines play an important role in the pathophysiology of osteoarthritis. Increased levels of the pro-inflammatory cytokine interleukin (IL)-1β have been shown to play an important role in the destructive process of osteoarthritis. The increased production of IL-1β is associated with increased levels of metalloproteinases (MMPs). These enzymes degrade collagen and proteoglycan, which makes up the cartilage matrix. IL-18 is also known to produce similar effects to those of IL-1β. Cytosolic IL-1β and IL-18 are inactive and require proteolytic activation by ICE/caspase-1. The processing and release of IL-1β necessitates activation of the IL-1 receptor (IL-1R). The interleukins, together with other inflammatory mediators, are also responsible for the induction of clinical symptoms of inflammation such as hyper-perfusion of the inflamed site, fatigue, and pain. Several studies indicate that inhibition of ICE, with the use of an irreversible ICE inhibitor, significantly suppresses mature IL-1β and IL-18 levels.

Treatments Aimed at Decreasing Pro-inflammatory Cytokine Levels in Osteoarthritis and Other Inflammatory Diseases

The use of non-steroidal anti-inflammatory drugs (NSAIDs) is a common treatment for arthritis. However, these drugs treat only the symptoms of inflammation and pain without intervening in cartilage degradation. The development of disease-modifying drugs is therefore an important step. Diacerhein/Rhein, Pralnacasan, and Anakinra represent new disease-modifying strategies for the treatment of arthropathies and other inflammatory diseases. Mechanisms involve inhibiting ICE/caspase-1 and interfering with the activation of the IL-1R to prevent proteolytic maturation of IL-1β and IL-18. The primary goal is to alleviate cartilage destruction and regain joint function.

Diacerhein and Rhein

Diacerhein, an ICE-inhibitor, is used in the treatment of osteoarthritis. Diacerhein is converted to Rhein, its active metabolite, which then inhibits IL-1 production and activity. Another study focused on ICE levels in human osteoarthritic cartilage to determine whether decreased ICE levels correlated to a decrease in IL-1β and IL-18 levels. Indeed, suppression of ICE resulted in decreased levels of these two molecules. A potential side effect of Diacerhein is increased prostaglandin synthesis due to the increase of cyclooxygenase-2. Questions arose in a study done with an accelerated canine model of osteoarthritis as to whether or not Diacerhein is in fact an effective disease-modifying drug, perhaps due to the counterbalancing effects of prostaglandin. A recent study bringing new evidence on the effect of Diacerhein contradicts this previous study. It reported decreased metalloproteinase levels and also suggested that Diacerhein had a positive effect on matrix synthesis. These results again give credence to the use of Diacerhein as a disease-modifying drug.

Pralnacasan

Pralnacasan is a specific inhibitor of ICE/caspase-1. It is an orally administrated pro-drug recently approved for the treatment of rheumatoid arthritis (RA). Phase I/II trials showed Pralnacasan actively inhibited human ICE, and ex vivo assays demonstrated inhibition of mature IL-1β production. ICE is an important enzyme in intestinal inflammation, utilizing IL-1β and IL-18 as its biological effectors. Pralnacasan is currently being considered for treatment of osteoarthritis, inflammatory bowel disease, and possibly other autoimmune diseases. It was shown to significantly improve disease activity in dextran sulfate sodium-induced colitis in mice. A reduction in joint damage was shown in collagenase-induced OA and spontaneously induced murine models of OA. This was confirmed by histopathological examination of the joints. Pralnacasan is the first potent orally available drug to specifically target ICE/caspase-1. In laboratory studies and clinical trials Pralnacasan has shown promise as a future treatment for inflammatory and autoimmune disease.

Anakinra (Kineret)

Anakinra is a human recombinant IL-1 receptor antagonist (IL-1ra) that exhibits identical activity to its naturally occurring counterpart, IL-1ra. Lower than normal levels of IL-1ra in the OA synovium have been observed, possibly due to the effect of increased nitric oxide seen in OA. Anakinra is categorized as a biological response modifier. It is the first biological modifier to demonstrate improvement in cartilage erosion when used in monotherapy or in combination with methotrexate, an antimetabolite. Combination treatment with...
etanercept, a tumor necrosis factor α inhibitor, showed an increase in the number of opportunistic infections in patients with RA. This establishes the significance to study the effects of Anakinra in combination with other disease-modifying antirheumatic drugs. The most pronounced side effect observed upon the administration of Anakinra and ceftriaxone, a cephalosporin antibiotic, has been mild injection-site reactions.

ALLERGIC RHINITIS AND ASTHMA: PEPTIDE-BASED THERAPEUTIC INTERVENTIONS

Allergies and asthma are an ever increasing problem, particularly in industrialized nations. This results in thousands of dollars in lost wages, decreased productivity, missed school days, and reduced concentration at work or school. Individual allergic responses range from the minor annoyance of itching, watery eyes, or sneezing to life-threatening airway swelling and anaphylaxis. Sensitization to an antigen occurs by an unknown mechanism involving antigen presentation to the immune system under conditions that favor an inflammatory response. This leads to the production of antigen-specific IgE antibodies. IgE binds its high-affinity receptor, FcεRI, on basophils and mast cells. Subsequent exposure to the antigen causes aggregation of the receptors via the IgE-antigen complexes, leading to mast cell degranulation. Within 10–15 min, stored chemical mediators, such as histamine, are released. The cascade of events that follows increases the release of many T helper type 2 (Th2) cytokines and chemokines (i.e. IL-3, IL-4, IL-5, GM-CSF). This ultimately pushes T helper type 2 (Th2) cytokines and chemokines (i.e. IL-3, IL-4, IL-5, GM-CSF). This ultimately pushes the mechanism of anergy induction is unclear, but may involve T cell regulation or the lack of co-stimulation. This method is associated with side effects, such as anaphylaxis, and may require life-long maintenance. It is also specific to the antigen used for treatment. However, sublingual formulations and standardized dosing are being developed, so allergen immunotherapy may become more plausible in the future.

Antigen immunotherapy

One of the oldest forms of peptide therapy for allergies, known as allergen immunotherapy, has been in use since the 1920s. The antigen is injected at a high dose and forces the immune system into tolerance. The mechanism of anergy induction is unclear, but may involve T cell regulation or the lack of co-stimulation. This method is associated with side effects, such as anaphylaxis, and may require life-long maintenance. It is also specific to the antigen used for treatment. However, sublingual formulations and standardized dosing are being developed, so allergen immunotherapy may become more plausible in the future.

Vasoactive intestinal peptide

Vasoactive intestinal peptide (VIP) is a natural peptide that potently causes smooth muscle relaxation in combination with nitric oxide and has been a target for the development of peptidomimetics. Unfortunately, early attempts to deliver synthetic VIPs to the lungs were discouraging due to their rapid inactivation by peptidases. More recent analogues showed more promise in their effects in vitro and in animal models. However, it was noted in one clinical trial that the results were not as satisfactory when compared with current therapy.

Monoclonal antibodies as a therapeutic strategy

A new trend in immunotherapy has been the development of monoclonal antibodies (Table 1). Antibody therapies have progressed largely due to the development of strategies for humanizing the proteins, which minimize the potential for patient reactions while maintaining the convenience of using non-human recombination systems to design the antibodies. Of course, the potential for reactions to the antibodies as foreign antigen, regardless of species, still exists. The reaction could degrade the protein available for therapy or, under the worst circumstances, exacerbate the allergic condition. An anti-IgE protein, Omalizumab, has recently been...
Table 1. Representative approaches to the modulation of various components of the aberrant immune system

<table>
<thead>
<tr>
<th>Mode of action</th>
<th>Target</th>
<th>Ligand model</th>
<th>Type of interaction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesion molecule</td>
<td>ICAM-1 intracellular domain</td>
<td>T lymphocyte adhesion</td>
<td>competitive inhibition of T lymphocyte migration across the vascular endothelium</td>
<td>42</td>
</tr>
<tr>
<td>antagonist</td>
<td>lymphocyte function antigen-1, CD11a</td>
<td>humanized monoclonal antibody to CD11a, Efalizumab</td>
<td>blocks T lymphocyte adhesion to vascular endothelium</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytokine/chemokine</td>
<td>IFN-γ</td>
<td>gene transfer or recombinant IFN-γ recombinant IL-12</td>
<td>enhances the Th1 response</td>
<td>53, 71</td>
</tr>
<tr>
<td>agonist (Th1)</td>
<td>IL-12</td>
<td></td>
<td>enhances the Th1 response</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>IL-4</td>
<td>soluble IL-4 receptor</td>
<td>sequesters IL-4 inhibiting Th2 differentiation and isotype switching to IgE</td>
<td>11</td>
</tr>
<tr>
<td>Cytokine/chemokine</td>
<td>IL-5</td>
<td>monoclonal antibody to IL-5, TRFK-5</td>
<td>sequesters IL-5 and decreases eosinophil levels</td>
<td>126</td>
</tr>
<tr>
<td>agonist (Th2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracellular signal</td>
<td>Zap-70 protein tyrosine kinase,</td>
<td>tandem SH2 domain tandem SH2 domain</td>
<td>competes with T cell receptor for binding competes for binding of Syk with high</td>
<td>47</td>
</tr>
<tr>
<td>antagonists</td>
<td>i.e. Syk</td>
<td></td>
<td>affinity IgE receptor, FcεRI</td>
<td>119</td>
</tr>
<tr>
<td>Receptor agonist</td>
<td>Vasoactive intestinal peptide (VIP)</td>
<td>IK312532</td>
<td>relaxes tracheal smooth muscle constriction with longer duration than VIP</td>
<td>73, 98</td>
</tr>
<tr>
<td>Receptor antagonist</td>
<td>low affinity receptor (FcεRII), CD23</td>
<td>primatized monoclonal antibody to CD23</td>
<td>inhibits IgE synthesis</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>β-chain (βc) subunit common to the</td>
<td>monovalent antibody to βc of receptor, BION-1</td>
<td>blocks binding of GM-CSF, IL-3, and IL-5, inhibiting eosinophil function and lifespan</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>GM-CSF, IL-3, and IL-5 receptors</td>
<td>GM-CSF analogue E21R (Glu21Arg)</td>
<td>not fully understood</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GM-CSF receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>IL-16 mimetic</td>
<td>blocks ligand binding without agonizing receptor</td>
<td>23, 74</td>
</tr>
<tr>
<td></td>
<td>chemokine receptors (CCR3)</td>
<td>N-terminal-truncated CCL14</td>
<td>binds CCR3 and causes internalization, desensitization, and a lack of eosinophil</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>leukotriene receptor</td>
<td>LTD4 mimetic, Zafirlukast</td>
<td>chemotaxis selective receptor antagonist, stabilizes mast cells</td>
<td>60</td>
</tr>
<tr>
<td>Antibody to IgE</td>
<td>serum IgE</td>
<td>humanized monoclonal antibody to IgE, Omalizumab</td>
<td>competes with the high-affinity IgE receptor, FcεRI, for binding of the CH3 domain</td>
<td>19, 69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease inhibitor</td>
<td>tryptase</td>
<td>βII tryptase structure</td>
<td>inhibits serine protease activity associated with mast cell degranulation</td>
<td>30</td>
</tr>
<tr>
<td>Antigen mimetic</td>
<td>peptide immuno-therapy</td>
<td>various specific allergens including: BeeVenom-</td>
<td>desensitizes immune system against specific antigens</td>
<td>2, 53</td>
</tr>
</tbody>
</table>

approved for use in severe allergic asthma by the United States Food and Drug Administration. Clinical studies are currently under way to expand Omalizumab’s use to include prevention of anaphylaxis (Table 1). Omalizumab serves to bind and reduce the levels of free IgE in the serum, reducing the severity of symptoms, and increasing tolerance to antigens. Although it is well tolerated overall, a few serious effects have been reported, as have long-term side effects due to chronic inhibition of the body’s IgE levels.

Monoclonal antibodies are also being investigated for their ability to bind receptors without activating them, as is the case with primatized anti-CD23. The antibody recognizes the low-affinity IgE receptor, FcεRII, which seems to have an influence on IgE synthesis. The anti-CD23 antibody showed a dose-dependent decrease in IgE in human trials, and although the trial showed no change in lung function, the anti-CD23 was well-tolerated compared with placebo and shows promise for the future.

The major Th2 cytokines act to increase inflammation by binding receptors on their target cells. These receptors are made up of subunits, including the β-chain (βc), which is common to the receptors for IL-3, IL-5, and GM-CSF. Another antibody approach under investigation by McClure et al. is...
BION-1, an anti-βc antibody. BION-1 acts to antagonize the subunit common to several Th2 cytokine receptors and blocks activation by the cytokines, as shown in animal models116. Future studies will be required to show whether the BION-1 antibody will continue to show promise.

Targeting intracellular signaling

Binding of the βc leads to recruitment of downstream kinases, including Lyn, Lck, Fgr, and Jak39. Modulation of these signaling cascades represents a more comprehensive approach to immunomodulation as the signals converge on these cascades. However, this brings with its own set of problems with regard to cellular entry and functional blockade of events involved in far greater processes. One target currently under investigation is the src homology-2 tandem repeat domain of spleen tyrosine kinase (Syk), a cytosolic protein tyrosine kinase. Development of peptides that can competitively inhibit FcεRI binding to Syk would block IgE signal transduction, therefore limiting the allergic response to antigen119. A more thorough review of the potential intracellular targets has recently been published39, 82.

Zafirlukast: a leukotriene mimic

An alternative to antibody-based therapies is to design proteins that mimic the natural ligand, as is the case with Zafirlukast, a leukotriene D4 mimetic. Zafirlukast competitively antagonizes the leukotriene receptors, stabilizing the mast cells and preventing the release of pro-inflammatory cytokines. Zafirlukast is generally well tolerated at the recommended dose and patients show improvement in asthma control as well as overall quality of life26, 59.

Cytokine mimicry

Many of the therapeutic approaches targeting cytokines have shown disappointing results due to the toxicity associated with their delivery or simply because they showed far less effectiveness than anticipated9. Intravenous IL-12 promised to augment the Th1-type response via suppression of IgE and eosinophil migration. Murine studies showed a reduction in IgE production and airway eosinophilia and an increase in IL-12 production; however, human trials showed significant toxicity15. This certainly precludes its use in human treatment in its current form; nevertheless, an alteration in the formulation may decrease toxicity. Conversely, the soluble receptor used to sequester the Th2 cytokine IL-4 was well tolerated in human trials; unfortunately, conflicting evidence with regard to its efficacy exists9. IL-4 is considered to be involved in isotype switching to IgE and Th2 cell differentiation. A study using nebulized IL-4R showed a reduction in dependence on steroids; however, a larger study, by Borish et al.11, showed no significant difference from placebo9. These less than satisfying results are likely due to the complexity of allergy as a disease, the choice of endpoint measures, and the lack of correlation between human disease and existing animal models35. With such a wide range of mediators involved in developing and maintaining allergy, it is unlikely that blocking any single mediator will resolve the disease state.

One of the major problems with the immunomodulatory therapies to date has been that most require intravenous or subcutaneous delivery. These methods will likely limit the therapies to very severe cases due to poor patient compliance and the great cost associated with this method of delivery. However, the use of peptidomimetics is clearly an interesting approach to the treatment of a potentially life-threatening disease. Further investigation into combination therapies, alternative deliveries, and novel target sites are warranted.

CNS: PEPTIDES AND PEPTIDOMIMETICS AS PROMISING THERAPEUTICS

In recent years there have been a number of studies attempting to apply small peptides to treat diseases in the CNS (Table 2). Peptides and peptidomimetics

<table>
<thead>
<tr>
<th>Peptidomimetic</th>
<th>Mechanism of action</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosaptide ™</td>
<td>peptidomimetic of prosaposin, the precursor to saposins A, B, C, and D, and a neurotrophic factor</td>
<td>Parkinson’s disease, stroke, pain75, 81, 90, 141</td>
</tr>
<tr>
<td>2,3-Benzodiazepin-1,4-diones</td>
<td>peptidomimetic inhibitor of γ-secretase</td>
<td>Alzheimer’s disease88, 110, 138</td>
</tr>
<tr>
<td>Saquinavir, Ritonavir, Indinavir and Amprenavir</td>
<td>HIV-1 and HIV-2 protease inhibitors, thus decrease viral assembly and budding</td>
<td>HIV13, 124</td>
</tr>
<tr>
<td>D3</td>
<td>peptidomimetic of TRKA-selective NGF</td>
<td>Alzheimer’s disease, cognitive impairment associated with age9</td>
</tr>
<tr>
<td>Multiple</td>
<td>opioid receptor agonists</td>
<td>pain51</td>
</tr>
</tbody>
</table>
are being developed that one day will successfully target chronic pain, Parkinson’s disease, Alzheimer’s disease (AD), ischemia, and CNS-changes induced by human immunodeficiency virus (HIV). Attempts are even being made to target mild cognitive impairment using neurotrophin-based peptidomimetics. Currently the only approved peptidomimetics-based therapies are proteasome inhibitors, such as saquinavir, used in the treatment of HIV-induced pathologies of the CNS.

Transport problems of peptidomimetics to the CNS

The vasculature of the CNS has evolved to keep the brain and spinal cord protected/separated from many natural metabolites. This barrier, called the blood-brain barrier (BBB), prevents essential molecules such as neurotransmitters from leaving the CNS, maintains ionic homeostasis, and keeps unwanted and potentially toxic substances, as well as many drugs that are used for targeting signaling pathways in the periphery, from entering the CNS.

The blood vessels supplying the brain are composed of a single layer of endothelial cells, astrocyte foot processes, and pericytes. The extremely tight junctions between the endothelial cells of the brain blood vessels are an important and characteristic component of BBB. The tightness of these junctions are assured by an elaborate connection of claudins, occludins, and other junctional adhesion molecules. Due to these tight junctions, para-cellular transport or diffusion is negligible, and in order for molecules to enter the brain, they must be small (<400–500 Da), lipophilic for diffusion through the cells, or actively transported. This rule applies for all areas of the brain except circumventricular organs, which are important for the release of circulating hormones. The BBB is disrupted following pathological events such as ischemia, although weakening of the BBB is delayed by 4–6 h. Therefore, even therapeutics engineered to prevent ischemia-associated cell death have to cross the BBB since they are most effective within the first 3 h after the occurrence of the ischemic pathology.

Since direct injection of treatments into the CNS, such as intrathecal administration, are invasive and difficult, strategies have been used to increase the transport of molecules across the BBB. These include increasing the osmolarity of the blood, often with mannitol, to open up the BBB tight junctions; increasing the lipophilicity of the treatment; and finally conjugating the peptide treatments to take advantage of receptor-mediated uptake through the BBB.

Receptor-mediated transport of molecules into the brain

The most important challenge during the development of peptidomimetics for the treatment of CNS pathologies is to design molecules that cross the BBB. Besides passive diffusion, researchers aim to take advantage of the BBB’s own receptor-mediated transport in order to deliver larger molecules. Please also consult the next section for an overview of approaches that aim to assist the transport of large molecules into cells. Receptor-mediated transport (RMT) is the most promising mechanism to circumvent the BBB and obtain access for therapies into the brain. RMT can be used to transport large-molecule therapeutics into the CNS that cannot normally enter otherwise. RMT takes advantage of naturally occurring transport proteins such as the transferrin receptor, the insulin receptor, or the immunoglobulin Fc receptor. For example, brain-derived neurotrophic factor has been fused to an anti-transferrin receptor monoclonal antibody. The transferrin receptor monoclonal antibody binds to the transferrin receptor in the endothelium cells and is transported into the brain where it can bind to neurotrophin tyrosine-kinase receptor B, leading to the protection of hippocampal neurons following ischemia in rats. However, it must be noted that the intracerebral pathways that govern the RMT require further study.

Peptidomimetics-based AD therapy approaches

AD is a neurodegenerative disorder and a leading cause of dementia. It is manifested by memory loss, impaired thinking, and personality changes. Most frequently it is found in elderly people. AD currently affects around 4.5 million people in the United States, 12 million worldwide. This is expected to increase 3-fold within the next 50 years, mainly due to changes in global population demographics. Among the hypotheses that attempt to explain the mechanism of the observed pathologic changes in AD, the “amyloid hypothesis” appears to be the most widely accepted. According to this hypothesis, the accumulation of amyloid-β (Aβ42, the 42-residue isoform of the amyloid-β peptide) leads to aggregate formation, neuronal cell death, and AD-typical dementia manifestation.

The treatment of choice has been cholinesterase inhibitors such as donepezil, galantamine, or rivastigmine to retard depletion of acetylcholine levels in the brain. However, these are only mildly beneficial. Recently, the N-methyl-D-aspartate receptor antagonist memantine has received approval for treatment of severe AD. However, the currently available therapies only treat the symptoms of AD and do not prevent or even delay the progression of the disease.
The work of Wolfe et al. has focused on secretases. Most of the research in this area has focused on the protease catalysis. This approach is similar to one applied for the development of HIV protease inhibitors. There are limitations regarding inhibiting γ-secretases, as APP is not the only protein it cleaves. γ-Secretase substrates include NOTCH1 receptor and NOTCH ligands. Thus potential toxic side effects may be related to this inhibitory activity. One method around this problem is the development of helical peptidomimetics that take the advantage of the membrane selectively excludes large polar compounds while allowing the passage of smaller, non-polar molecules through passive diffusion. The recent discovery and characterization of numerous peptides/small proteins, generally referred to as cell-penetrating peptides (CPP) or protein transduction domains, allow for rapid, non-invasive transport of conjugated macromolecules through the membrane (Table 3).

In 1988, both Green and Frankel identified the first CPP in the HIV-1 transactivation factor TAT protein. Subsequently it was discovered that the minimal 13-amino-acid peptide sequence (amino acids 48-60) was also able to transduce the membrane. The antennapedia protein and, later, the short-ened penetratin peptide and the herpes simplex virus structural protein VP22 represent some of the better characterized peptides that are currently being used for the transport of larger biomolecular cargoes. Comprehensive reports of other identified CPPs have been compiled in several recent reviews.

Multiple peptidomimetics are under development to treat AD using different pathways. One of the main goals is to disrupt amyloid β aggregation. This approach has entered phase III trials with a glycosaminoglycan mimetic that is supposed to disrupt aggregates. Eighteen patients showed improved cognition over controls over 16 months in the Neurochem company phase II clinical trial.

A second approach for treating AD is to modulate the production of highly amyloidogenic Aβ42 peptide produced from amyloid β-protein by secretases. However, Aβ42 is not the only product of amyloid precursor protein (APP). There are 3 secretases that process APP, α-secretase, β-secretase, and γ-secretases. Most of the research in this area has focused on peptidomimetics that inhibit γ-secretases, as inhibition of this protease decreases the levels of all the Aβ isoforms. The work of Wolfe et al. has focused on this pathway. They have identified the hydroxyethyl moiety that mimics the transition state of the aspartyl protease catalysis. This approach is similar to one applied for the development of HIV protease inhibitors. There are limitations regarding inhibiting γ-secretases, as APP is not the only protein it cleaves. γ-Secretase substrates include NOTCH1 receptor and NOTCH ligands. Thus potential toxic side effects may be related to this inhibitory activity. One method around this problem is the development of helical peptidomimetics that take the advantage of the membrane selectively excludes large polar compounds while allowing the passage of smaller, non-polar molecules through passive diffusion. The recent discovery and characterization of numerous peptides/small proteins, generally referred to as cell-penetrating peptides (CPP) or protein transduction domains, allow for rapid, non-invasive transport of conjugated macromolecules through the membrane (Table 3).

The delivery of large biomolecules into cells for therapeutic applications has proven to be difficult due to the physiological nature of the cytoplasmic cell membrane. Composed of a lipid bilayer, the cell membrane selectively excludes large polar compounds while allowing the passage of smaller, non-polar molecules through passive diffusion. The recent discovery and characterization of numerous peptides/small proteins, generally referred to as cell-penetrating peptides (CPP) or protein transduction domains, allow for rapid, non-invasive transport of conjugated macromolecules through the membrane (Table 3).
Several CPPs appear to share similar structural characteristics, suggesting a common mechanism of membrane transduction. The most notable commonalities appear to be the cationic character and diminutive length of the peptides. In support of this it has been demonstrated that short poly-arginine and, to a lesser extent, poly-lysine peptides have exhibited efficient cellular uptake. Early studies demonstrated that peptide transduction could occur at low temperatures and in the presence of endocytic inhibitors, suggesting an endocytic-independent mechanism of membrane transduction. These findings have been recently debated along the premise that harsh fixation of cells may have resulted in artifactual observations. Regardless, the mode of entry appears to be dependent on an interaction between the positively charged CPP and the negatively charged surface of the cell membrane. In support of this it has been shown that negatively charged heparan sulfate proteoglycans, which are associated with the cell membrane, are involved in the internalization of the TAT protein. Ultimately, further experimentation is warranted to determine the mechanism(s) of CPP entry into the cell.

Despite the lack of detailed knowledge of a mechanism of entry into the cell, numerous studies have demonstrated the potential applications of CPP as carriers of biomolecular cargoes. The cargoes may consist of, but are not restricted to, peptides, nucleic acids, and lipids and can be attached either covalently or non-covalently. A recent review by Zhao and Weissleder presented several cargoes that have been utilized to date.

Based on the amount of published experimental data that describes the usage of CPPs to deliver larger cargos, the potential therapeutic applications of these cellular ferries as transporters of large, pharmacologically active agents that target cancer, autoimmune pathologies, and other diseases are significant. For example, the p53 tumor suppressor protein is mutated in over half of all cancer cells, which has made it an attractive model to employ CPP-based strategies. Targeted delivery of functional p53 or other agents to cells, thereby correcting disabled signaling pathways, would have significant potential for the development of new therapies for cancer, asthma, autoimmune pathologies including OA, and other diseases. Initial studies using: TAT, VP22, poly-arginine, and penetratin as transport vectors conjugated to the p53 protein, or derived peptides, have resulted in varying degrees of success. The CPP-p53 model, which consists of targeted recovery of a defective molecular pathway, exemplifies the potential of CPP-based transport of large cargoes in the treatment of cancer, inflammation, and other diseases.

CONCLUSION

Dysregulation of apoptosis contributes to a multitude of human diseases, and drugs that modulate apoptotic signaling pathways may have many clinical applications in the future. Although the development of caspase inhibitors for clinical use has a long way to go, many promising results have already been gleaned from animal studies. As the compounds used in many of these studies are not optimal for in vivo caspase inhibition, new inhibitors with improved cell penetration and pharmacokinetic properties could well yield better results. In time, agents designed to enhance caspase activity, rather than inhibit it, will probably also be developed for therapeutic application. With due attention to the potential risks outlined above, therapeutic modulation of caspase activity is likely to offer significant relief to patients with not only autoimmune conditions, but also neurodegenerative disorders.

Given the progress in understanding cytokine pathways and their effect on the pathophysiology of inflammatory-related diseases, several possibilities towards a new approach in the treatment of osteoarthritis and asthma exist. Studies have established a central role for IL-1β and a slightly lesser role for IL-18 in osteoarthritis, rheumatoid arthritis, and intestinal inflammatory disease. The approval of...
some disease-modifying drugs used for rheumatoid arthritis could intensify the research on such treatment procedures not only for osteoarthritis, but also for other diseases. Furthermore, modulation of the type of cell death (apoptotic – no activation of immune response, necrotic – activation of immune response against antigens released from the dying cell), may open completely new treatment strategies for cancer and autoimmune diseases16, 38, 77. This approach is becoming more feasible than ever since in vivo assays that can discriminate between both forms of cell death, apoptotic or necrotic are already in place5.

Our knowledge of the immediate mechanisms of inflammatory-caspase activation advances along with that of the components of inflammasomes, of which many have been defined84. Thus, targeting their components, such as NALPs or ASCs, may prove to be even more effective than targeting the caspases or cytokines themselves. Furthermore, better understanding of inflammasome functions may lead to the development of entirely new treatment strategies that would, for example, activate one’s own immune system to better combat cancer or HIV-infection, or even ordinary viral infections related to the “common cold”.

\textbf{REFERENCES}

ments. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A
M, 133–139, discussion 139–140.
Imaging brain amyloid of Alzheimer disease in vivo in transgenic
mice with an Abeta peptide radiopharmaceutical. J. Cereb. Blood
69. Leung D. Y., Yunginger J. W., Burks A. W. Jr.,
Peptide-based immunotherapy: new develop-
ments. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A
M, 133–139, discussion 139–140.
70. Leung D. Y., Sampson H. A., Yunginger J. W., Burks A. W. Jr.,
Larche M. (2003): Peptide-based immunotherapy: new develop-
ments. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A
M, 133–139, discussion 139–140.
71. Li X. M., Chopra R. K., Chou T. Y., Schofield B. H., Wills-Karp
inhibits pulmonary allergic reactions in mice. J. Immunol., 157,
3216–3219.
Correlation between hydropathic properties and efficiency of car-
rier-mediated membrane transduction and apoptosis of a p53
73. Linden A., Hansson L., Andersson A., Palmqvist H., Arvidsson P.,
74. Little F. F. and Cruikshank W. W. (2004): Interleukin-16 and pep-
tide derivatives as immunomodulatory therapy in allergic lung dis-
neurons in a model of Parkinson’s disease. J. Neurochem., 15,
1080–1082.
76. Los M., Burek C. J., Stroh C., Benedyk K., Hug H. and
549–561.
77. Los M., van de Craen M., Penning C. L., Schenk H., Westendorp
M., Buerkle P. A., Drige W., Krammer P. H., Fiers W. and
Schulze-Osthoff K. (1995): Requirement of an ICE/Ced-3 pro-
caspases in development, immunity, and apoptotic signal transduc-
Neuroprotective effect of retro-inverso Prosaptide D5 on focal
cerebral ischemia in rat. Neuroreport, 11, 1791–1794
receptor I signaling by tyrosine kinase inhibitors: search for ther-
apeutic targets of inflammatory and allergy diseases. Curr. Pharm.
Discs., 10, 1727–1737.
82. Martin G., Bogdanowicz P., Domagala F., Ficheux H. and Pujol J.
P. (2004): Articular chondrocytes cultured in hypoxia: their response
to interleukin-1beta and rhein, the active metabolite of
83. Martinon F. and Tschopp J. (2004): Inflammatory caspases: link-
with arthroses or rheumatoid arthritis]. Z. Orthop. Ihre
3216–3219.
84. Martin G., Bogdanowicz P., Domagala F., Ficheux H. and Pujol J.
P. (2004): Articular chondrocytes cultured in hypoxia: their response
to interleukin-1beta and rhein, the active metabolite of
85. Marty C., Meylan C., Schott H., Ballmer-Hofner K. and
Schwendener R. A. (2004): Enhanced hepatic sulfate proteoly-
can-mediated uptake of cell-penetrating peptide-modified lipo-
86. Massa S. M., Xie Y. and Longo F. M. (2003): Alzheimer’s ther-
peutics: neurotrophin domain small molecule mimetics. J. Mol.
Neurosci., 20, 323–326.
Pathophysiologe roles for IL-18 in inflammatory arthritis.
Expert Opin. Ther. Targets, 7, 701–724.
assembly of the ternary granulocyte-macrophage colony-stimulat-
89. Mendoza F. J., Espino P. S., Cann K. L., Bristow N., McCrea K.
80. Los M., Wesselborg S. and Schulze Osthoff K. (1999): The role of
319

118. Rudolph K., Gerwin N., Verzijl N., van der Kraan P. and van Rheumatoid and osteoarthritic synoviocytes – regulation by IFN-

