CTLA-4 (CD152) gene polymorphism at position 49 in exon 1 in Graves’ disease in a Polish population of the Lower Silesia region

Irena Frydecka1, 2 ADEFG, Jacek Daroszewski3 ADEFE, Katarzyna Suwalska1 BEF, Magdalena Żołędziewska4 BEF, Anna Tutak1 CF, Mirosław Słowik5 BEF, Stanisław Potoczek2 DF and Tadeusz Dobosz4 CF

1 Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
2 Department of Hematology, Blood Neoplastic Disease and Bone Marrow Transplantation, Medical University, Wrocław, Poland
3 Department of Endocrinology and Diabetics, Medical University, Wrocław, Poland
4 Department of Forensic Medicine, Medical University, Wrocław, Poland
5 Department of Ophthalmology, Medical University, Wrocław, Poland

Source of support: grant no. 842 of the State Committee for Scientific Research (KBN, Poland).

Summary

Graves’ disease (GD) is an autoimmune disease believed to be caused by a combination of environmental and genetic factors. The gene encoding cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is one of the candidate genes for conferring susceptibility to thyroid autoimmunity. The aim of the study was to investigate the association between the exon 1 CTLA-4 gene polymorphism A(49)G and susceptibility to GD and Graves’ ophthalmopathy (GO) as well as its severity in a Polish population of the Lower Silesia region.

Materials and Methods:
We analyzed the A(49)G exon 1 CTLA-4 gene polymorphism in 99 unrelated Polish patients with GD, of whom 50 had clinically evident GO (NOSPECS class III and higher), and 154 matched healthy subjects from the Lower Silesia region. Genomic DNA was isolated from whole frozen blood using the NucleoSpin® Blood kit. A/G transition was genotyped by polymerase chain reaction followed by labeling with the SnaPshot kit of PE Applied Biosystems and detected using an ABI PRISM 310 capillary genetic analyzer.

Results:
The distribution of CTLA-4 exon 1 A(49)G genotype, allele, and phenotypic frequencies did not differ between patients with GD and healthy subjects. There was a significantly lower frequency of the AA genotype in the group of patients with clinically evident GO than in patients without severe GO (22% vs. 43%; p=0.02, OR=2.6).

Conclusions:
Our results showed that the AA genotype in patients with GD is associated with a lower risk of GO severity.

Key words: CTLA-4 • A(49)G • Graves’ disease • Lower Silesia

Full-text PDF: http://www.aite-online/pdf/vol_52/no_5/6343.pdf
Author’s address: Irena Frydecka, M.D. Ph.D., Department of Hematology, Blood Neoplastic Disease and Bone Marrow Transplantation, Medical University, Pasteura 4, 50-367 Wrocław, Poland, e-mail: frydecka@hemat.am.wroc.pl
INTRODUCTION

Graves’ disease (GD) is a T cell-mediated autoimmune disease of the thyroid gland characterized by hyperthyroidism, a diffuse goiter and, in some cases, ophthalmopathy and pretibial myxedema. The course of Graves’ ophthalmopathy (GO) is unpredictable, and a sudden worsening of GO can occur at any time. Hyperthyroidism is a direct result of the stimulating effect of an autoantibody directed against the thyroid-stimulating hormone receptor (TSHR). Increasing evidence supports the suggestion that GD occurs in genetically susceptible individuals and that a number of genetic loci contribute to the development of disease. Genome screening has provided evidence for the linkage of three human chromosomal regions, designated GD-1 (chromosome 14), GD-2 (chromosome 20), and GD-3 (X chromosome), for GD.

Increasing evidence supports the suggestion that GD occurs in genetically susceptible individuals and that a number of genetic loci contribute to the development of disease. Genome screening has provided evidence for the linkage of three human chromosomal regions, designated GD-1 (chromosome 14), GD-2 (chromosome 20), and GD-3 (X chromosome), for GD.

MATERIALS AND METHODS

The study included 99 unrelated, randomly selected Polish patients with GD (80 women and 19 men), living in the Lower Silesia area with ages between 20–82 years (mean 50±11 years). Diagnosis of GD was based on the presence of hyperthyroidism, diffuse goiter, detectable thyrotropin receptor autoantibodies, and/or increased radio-iodine uptake. The severity of ophthalmopathy was assessed according to the NOSOECS classification.

Patients with proptosis, extraocular-muscle dysfunction, exposure keratitis, and optic neuropathy (NOSPECS class III and higher) were considered as having clinically evident disease. Patients were categorized according to their highest NOSOECS class: class 0 consisted of 10 patients, class I of 19, class II of 20, and class III and higher of 50 patients. The control group consisted of 154 age- and sex-matched healthy subjects from the same area.

Amplification of genomic DNA

Genomic DNA was isolated using the NucleoSpin Blood kit (Marcherey-Nagel, Germany) from whole frozen blood. To amplify the targeted sequence of DNA in exon 1 of the CTLA-4 gene from chromosome 2, the primers F 5'-TTG CCT TGG ATT TCA GCG GCA CAA-3' and R 5'-CAC CTC CTC CAT CTT CAT GCT CC-3' were designated. Allele identification was achieved by polymerase chain reaction (PCR) amplification of 0.5–1.0 ng of genomic DNA using the biometra UNOB-Thermoblock (Biometra, Germany). PCR was carried out in a total volume of 10 µl, containing 0.1 µM of each primer and TaqMasterMix (Qiagen, Germany) with 1 unit Taq DNA polymerase, 1 x PCR buffer (containing 15 mM of MgCl2), and 200 µM of each dNTP. The PCR profile was as follows: initial denaturation at 95°C for 5 min, followed by 30 cycles denaturation at 95°C for 1 min, annealing for 1 min at 60°C, extension for 1 min at 72°C, and a final extension for 10 min at 72°C. The amplified DNA was 142 bp in length.

Minisequencing

The amplified product was purified of dNTPs and primers using the QIAquick PCR Purification Kit (Qiagen, Germany) to avoid participation in the subsequent primer-extension reaction. Details of minise-
sequencing methods were previously described by Bočko et al.⁸

Electrophoresis and detection

The products of the SNaPshot reaction were analyzed on an ABI PRISM 310 Genetic Analyzer equipped with GeneScan Analysis Software version 3.1 of PE Applied Biosystems (USA). Electrophoresis and detection were described in details previously⁸.

Statistical analysis

Allele, phenotype, and genotype frequencies were compared between groups using Fisher’s exact test. A p value of <0.05 was considered significant.

RESULTS

The distribution of CTLA-4 exon 1 A(49)G of allele, phenotype, and genotype frequencies did not differ between patients with GD and healthy subjects, nor between GD patients without evident, with evident GO, and controls (Table 1). No significance differences in the distribution of the CTLA-4 exon 1 A(49)G genotype, allele, and phenotypic frequencies were also found between patients without and with evident GO, although a trend towards higher frequencies of the AA allele in the group of patient without evident GO was observed (p=0.06; Table 2). There was a significantly higher frequency of the AA genotype versus the AG+GG genotype in patients without severe GO (genotype AA: 43% vs. 22%, Fisher’s exact test p=0.02, OR=2.6; Table 3).

DISCUSSION

CTLA-4 (CD152) is a CD28 homologue expressed on activated T cells and, upon interaction with CD80 or CD86 on antigen-presenting cells, exerts a down-regulatory effect on T cell-mediated immune responses⁹, ¹⁰. In addition, CTLA-4 signaling mediates antigen-specific apoptosis of T cells and suppresses autoreactive proliferation of T lymphocytes¹⁹, ³⁶. Therefore, this immunomodulatory protein is significant in regulating and maintaining self-tolerance. Breakdown of the tolerance may result in the induction of autoimmunity. T lymphocyte-mediated destruction of host cells is one of the common pathogenic autoimmune mechanisms, which include thyroid autoimmunity²⁶, ³⁶.

Table 1. The CTLA-4 gene exon 1 polymorphism in patients with and without evident Graves’ ophthalmopathy (GO) and healthy subjects

<table>
<thead>
<tr>
<th>Patients total (I) n = 99 (%)</th>
<th>Patients without evident GO (II) n = 49 (%)</th>
<th>Patients with evident GO (III) n = 50 (%)</th>
<th>Controls (IV) n = 154 (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A⁴⁹</td>
<td>114 (57.6)</td>
<td>63 (64.3)</td>
<td>51 (51.0)</td>
<td>0.696</td>
</tr>
<tr>
<td>G⁴⁹</td>
<td>84 (42.4)</td>
<td>35 (35.7)</td>
<td>49 (49.0)</td>
<td>0.476</td>
</tr>
<tr>
<td>Phenotype frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-positive</td>
<td>82 (82.8)</td>
<td>42 (85.7)</td>
<td>40 (80.0)</td>
<td>0.490</td>
</tr>
<tr>
<td>A-negative</td>
<td>67 (67.7)</td>
<td>28 (57.1)</td>
<td>39 (78.0)</td>
<td>0.322</td>
</tr>
<tr>
<td>Genotype frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A⁴⁹A⁴⁹</td>
<td>32 (32.3)</td>
<td>21 (42.9)</td>
<td>11 (22.0)</td>
<td>0.834</td>
</tr>
<tr>
<td>A⁴⁹G⁴⁹</td>
<td>50 (50.5)</td>
<td>21 (42.9)</td>
<td>29 (58.0)</td>
<td>0.637</td>
</tr>
<tr>
<td>G⁴⁹G⁴⁹</td>
<td>17 (17.2)</td>
<td>7 (14.2)</td>
<td>10 (20.0)</td>
<td>0.244</td>
</tr>
</tbody>
</table>

Table 2. Genotype, phenotype and allele frequencies of the CTLA-4 A(49)G gene polymorphism in patients with Graves’ disease without and with evident Graves’ ophthalmopathy (GO)

<table>
<thead>
<tr>
<th>Patients without evident GO n = 49 (%)</th>
<th>Patients with evident GO n = 50 (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele frequencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A⁴⁹</td>
<td>63 (64.3)</td>
<td>51 (51.0)</td>
</tr>
<tr>
<td>G⁴⁹</td>
<td>35 (35.7)</td>
<td>49 (49.0)</td>
</tr>
<tr>
<td>Phenotype frequencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-positive</td>
<td>42 (85.7)</td>
<td>40 (80.0)</td>
</tr>
<tr>
<td>A-negative</td>
<td>28 (57.1)</td>
<td>39 (78.0)</td>
</tr>
<tr>
<td>Genotype frequencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A⁴⁹A⁴⁹</td>
<td>21 (42.9)</td>
<td>11 (22.0)</td>
</tr>
<tr>
<td>A⁴⁹G⁴⁹</td>
<td>21 (42.9)</td>
<td>29 (58.0)</td>
</tr>
<tr>
<td>G⁴⁹G⁴⁹</td>
<td>7 (14.2)</td>
<td>10 (20.0)</td>
</tr>
</tbody>
</table>

Table 3. Genotype frequencies of CTLA-4 A(49)G gene polymorphism in patients with Graves’ disease without and with evident Graves’ ophthalmopathy (GO)

<table>
<thead>
<tr>
<th>Patients n</th>
<th>Genotype</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without evident GO 49</td>
<td>AA 21 (42.9)</td>
<td>AG+GG 28 (57.1)</td>
</tr>
<tr>
<td>With evident GO 50</td>
<td>AA 11 (22.0)</td>
<td>AG+GG 39 (78.0)</td>
</tr>
</tbody>
</table>

p = 0.03
The CTLA-4 locus has been found to be a strong genetic marker of GD22, 40.

An association between the exon 1 CTLA-4 A(49)G gene polymorphism and GD was found in previously published data on the Polish population2, European Caucasians in Germany18, the UK21, 41, and Caucasians in the United States37, 47. However, these results were not confirmed in studies on the Japanese3, 4, Hong Kong Chinese22, African American11, French17 and UK populations22. In our study we could not find differences in the frequencies of the AA, AG, and GG genotypes at position A(49)G between patients and healthy subjects.

GO is considered to be an autoimmune inflammatory disorder affecting the extracocular muscles and the orbital fatty/connective tissue24. The effects of inflammation, mediated through the release of cytokines, include the proliferation of fibroblasts and adipocytes in the orbital soft tissues. The recruitment of T cells to the orbits of affected patients may result from expression of the target of the aberrant immune response in GD: the TSHR in the orbits of patients with this ophthalmic complication13.

There is controversy concerning an association between CTLA-4 gene polymorphisms and GO2, 5, 7, 9, 28, 45, 46. Similarly to the studies performed by Vaidya et al.45 in UK population, we showed a significantly higher frequency of the AA genotype in GD patients without evident GO compared with patients with evident GO. In contrast, such association was not found by others2, 5, 7, 9, 28, 46.

The functional significance of the CTLA-4 gene polymorphism is not fully clarified. It has been found that the A(49)G single nucleotide polymorphism results in the substitution of the threonine with alanine at codon 17 of the leader sequence. This sequence serves as a signal peptide to direct the secreted protein to the endoplasmic reticulum12. The codon 17 amino acid variation can affect a conformation of the leader peptide that leads to an “altered address” of intracellular CTLA-4 trafficking. This might result in an altered transition of CTLA-4 molecules between intracellular pools and the cell surface. Recent studies have shown different staining patterns of the intracellular distribution of CTLA-4 between patients with GG genotype and individuals homozygous for A at position 4932. In addition, a relationship between A(49)G variation and the strength of down-regulation of T cell activation has been shown30, 32. Another explanation of how the A/G polymorphism may affect CTLA-4 function has been provided by Anjos et al.3 These authors reported that the G allele in the signal peptide was associated with incomplete product glycosylation, and a lower ratio of cell-surface to total cellular CTLA-43.

As other autoimmune disorders, GD is a polygenic disease. This means that a combination of genetic factors influences the risk of disease; moreover, different etiologic factors may be involved in GD and GO, such as microbiological agents and environmental factors14, 34.

The contradictory reports from different centers may be due to the genetic heterogeneity of the different ethnic groups and yet unknown environmental factors which influence the onset of the disease. It cannot be excluded that the etiologic factors involved in GD and GO may differ among different populations in geographically distinct regions.

REFERENCES

and HLA gene susceptibility to thyroid-associated orbitopathy. Lancet, 354, 1824.

