Polymorphisms within the genes encoding TNF-α and TNF-β associate with the incidence of post-transplant complications in recipients of allogeneic hematopoietic stem cell transplants

Katarzyna Bogunia-Kubik

Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Source of support: grant no. 6 P05B 056 20 of the State Committee for Scientific Research (KBN, Poland)

Summary

Hematopoietic stem cell transplantation (HSCT) is a curative treatment of many hematological disorders. Recent studies have shown the associations between polymorphic features of cytokine-encoding genes and the incidence of post-transplant complications in the recipients of allogeneic HSCT. This review focuses on the relationship between the polymorphic patterns of patient genes encoding tumor necrosis factor (TNF)-α and TNF-β and the manifestation of post-transplant complications, acute graft-versus-host disease (aGvHD), generation of toxic lesions, and mortality. Discussed in more detail are the relationships of TNFα microsatellites and polymorphisms within the promoter region of the TNF-α-encoding gene (TNFA) in the position (–308) and within the first intron of the TNF-β-encoding gene (TNFB). It appeared that heterozygosity within the TNFA promoter and the first intron of the TNFB gene increased the susceptibility to severe grades III–IV of toxic complications, while the presence of the TNFα3 homozygous genotype was associated with a higher risk of severe aGvHD and early mortality in patients after allogeneic HSCT. These results imply that donor-recipient genotyping, extended to cytokine loci, may be of prognostic value for transplantation outcome.

Key words: allogeneic HSCT • TNF polymorphism • GvHD • toxicity

Polymorphisms within the genes encoding TNF-α and TNF-β associate with the incidence of post-transplant complications in recipients of allogeneic hematopoietic stem cell transplants

Katarzyna Bogunia-Kubik

Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Source of support: grant no. 6 P05B 056 20 of the State Committee for Scientific Research (KBN, Poland)

Summary

Hematopoietic stem cell transplantation (HSCT) is a curative treatment of many hematological disorders. Recent studies have shown the associations between polymorphic features of cytokine-encoding genes and the incidence of post-transplant complications in the recipients of allogeneic HSCT. This review focuses on the relationship between the polymorphic patterns of patient genes encoding tumor necrosis factor (TNF)-α and TNF-β and the manifestation of post-transplant complications, acute graft-versus-host disease (aGvHD), generation of toxic lesions, and mortality. Discussed in more detail are the relationships of TNFα microsatellites and polymorphisms within the promoter region of the TNF-α-encoding gene (TNFA) in the position (–308) and within the first intron of the TNF-β-encoding gene (TNFB). It appeared that heterozygosity within the TNFA promoter and the first intron of the TNFB gene increased the susceptibility to severe grades III–IV of toxic complications, while the presence of the TNFα3 homozygous genotype was associated with a higher risk of severe aGvHD and early mortality in patients after allogeneic HSCT. These results imply that donor-recipient genotyping, extended to cytokine loci, may be of prognostic value for transplantation outcome.

Key words: allogeneic HSCT • TNF polymorphism • GvHD • toxicity

Polymorphisms within the genes encoding TNF-α and TNF-β associate with the incidence of post-transplant complications in recipients of allogeneic hematopoietic stem cell transplants

Katarzyna Bogunia-Kubik

Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Source of support: grant no. 6 P05B 056 20 of the State Committee for Scientific Research (KBN, Poland)

Summary

Hematopoietic stem cell transplantation (HSCT) is a curative treatment of many hematological disorders. Recent studies have shown the associations between polymorphic features of cytokine-encoding genes and the incidence of post-transplant complications in the recipients of allogeneic HSCT. This review focuses on the relationship between the polymorphic patterns of patient genes encoding tumor necrosis factor (TNF)-α and TNF-β and the manifestation of post-transplant complications, acute graft-versus-host disease (aGvHD), generation of toxic lesions, and mortality. Discussed in more detail are the relationships of TNFα microsatellites and polymorphisms within the promoter region of the TNF-α-encoding gene (TNFA) in the position (–308) and within the first intron of the TNF-β-encoding gene (TNFB). It appeared that heterozygosity within the TNFA promoter and the first intron of the TNFB gene increased the susceptibility to severe grades III–IV of toxic complications, while the presence of the TNFα3 homozygous genotype was associated with a higher risk of severe aGvHD and early mortality in patients after allogeneic HSCT. These results imply that donor-recipient genotyping, extended to cytokine loci, may be of prognostic value for transplantation outcome.

Key words: allogeneic HSCT • TNF polymorphism • GvHD • toxicity

Polymorphisms within the genes encoding TNF-α and TNF-β associate with the incidence of post-transplant complications in recipients of allogeneic hematopoietic stem cell transplants

Katarzyna Bogunia-Kubik

Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Source of support: grant no. 6 P05B 056 20 of the State Committee for Scientific Research (KBN, Poland)

Summary

Hematopoietic stem cell transplantation (HSCT) is a curative treatment of many hematological disorders. Recent studies have shown the associations between polymorphic features of cytokine-encoding genes and the incidence of post-transplant complications in the recipients of allogeneic HSCT. This review focuses on the relationship between the polymorphic patterns of patient genes encoding tumor necrosis factor (TNF)-α and TNF-β and the manifestation of post-transplant complications, acute graft-versus-host disease (aGvHD), generation of toxic lesions, and mortality. Discussed in more detail are the relationships of TNFα microsatellites and polymorphisms within the promoter region of the TNF-α-encoding gene (TNFA) in the position (–308) and within the first intron of the TNF-β-encoding gene (TNFB). It appeared that heterozygosity within the TNFA promoter and the first intron of the TNFB gene increased the susceptibility to severe grades III–IV of toxic complications, while the presence of the TNFα3 homozygous genotype was associated with a higher risk of severe aGvHD and early mortality in patients after allogeneic HSCT. These results imply that donor-recipient genotyping, extended to cytokine loci, may be of prognostic value for transplantation outcome.

Key words: allogeneic HSCT • TNF polymorphism • GvHD • toxicity
INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) is a curative treatment for many hematological disorders. Siblings compatible with the recipient with regard to both human leukocyte antigen (HLA) haplotypes are optimal for blood cell or bone marrow donation. However, acute graft-versus-host disease (aGvHD) still remains a major complication, even in the best HLA-matched donor-recipient pairs, affecting up to 40–50% of patients. The high occurrence in this group of patients is largely due to minor histocompatibility differences between donor and recipient, and the presence of particular HLA specificities in donor-patient pairs. More recently, non-HLA genes encoding cytokines involved in the pathogenesis/control of the disease have been implicated. These observations have led to studies investigating the possible role of patient cytokine genotypes that may influence the development of aGvHD through cytokine activation during the pre-transplant conditioning regions. Recently published data have documented the associations of polymorphic features of cytokine genes with post-transplant complications in allogeneic HSCTs, and the presence of particular HLA specificities in donor-patient pairs. These have included tumor necrosis factor (TNF)-α and TNF-β cytokines encoded within the major histocompatibility complex (MHC) on chromosome 6, as well as those with genes located on other chromosomes, as, for example, interferon (IFN)-γ, interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-β. Cytokine genotypes associated with aGvHD are listed in Table 1. It has been documented that TNF and IL-10 microsatellites and single nucleotide polymorphisms of the IL-10, IFN-γ, and TGF-β-encoding genes, associate with the risk for aGvHD manifestation. It has also been observed that TNF-α gene (TNFA), TNF-β gene (TNFB), and IL-6 gene polymorphisms associate with the susceptibility for severe toxic complications.

Therefore, there are a number of cytokines whose polymorphic features may contribute to the development of post-transplant complications. This paper is focused on associations between TNF alleles of recipients of allogeneic stem cells and transplant outcome, the generation of toxic lesions, and the incidence of aGvHD and mortality.

ROLE OF TNF-α IN THE PERPETUATION OF GVHD

GvHD occurs when transplanted donor T lymphocytes react to foreign host cells and it is characterized by hematopoietic dysfunction, immunosuppression, and a wide variety of host tissue injuries. The skin, gastrointestinal tract, and liver are major target organs of aGvHD. Both T cells and cytokines, including TNF-α, are the major effectors in GvHD. The initial phase of GvHD is arguably initiated prior to transplantation, where necessary transplant conditioning regimens damage GvHD target organs (initial skin and gut). This conditioning gives rise to subsequent release of cytolytic cytokines, including TNF-α and IL-1. This in turn causes an upregulation of HLA-DR and adhesion molecule expression, which aids to activate allogeneic donor T cells during the initial phase following stem cell transplantation. Proliferation of T cells, release of IL-2, and the cytokine cascade or “storm” ensue, causing the characteristic lesions associated with GvHD in the target organ. Acute GvHD usually commences 30–100 days post-transplant and is the most studied form of GvHD. Chronic GvHD (cGvHD), occurring, by definition, more than 100 days post-transplant, is often, but not always, associated with prior aGvHD and can in most respects be defined as a separate disease with autoimmune type associations.

TNF-α and TNF-β are pro-inflammatory cytokines with a number of biological activities, including the mediation of inflammatory responses. Pro-inflammatory cytokines, especially TNF-α, are involved in the induction and effector phase of aGvHD. TNF-α is released pre-transplant due to irradiation and cytotoxic pre-conditioning regimens. TNF-α serum level during the pre-conditioning treatment has been shown to correlate with severe complications, the manifestation of aGvHD, and mortality after HSCT.

The role of TNF-α as a mediator of graft-versus-host reactions (GvHR) has also been analyzed by an in vitro skin explant assay. This assay involves sensitizing donor lymphocytes in vitro in a primary mixed lymphocyte reaction (MLR) and then evaluating the secondary response on patient skin biopsies by grading the GvHR (grades I–IV) histopathologically.
in vitro skin explant model has been successfully used to predict aGvHD in HLA-identical sibling bone marrow transplants and to investigate the role of cytokines (IFN-γ and TNF-α) in GvHR. It has been observed that unmatched mixed lymphocyte culture supernatants containing high levels of TNF-α could produce a graft-versus-host type of histopathological damage in human skin explant assays. TNF-α production in an in vitro skin explant assay has been found to correlate with the development of more severe GvHD. Extended studies, including an analysis of cytokine production of T cell lines and clones derived from the skin explant culture, have also implicated a role of TNF-α as a factor affecting the manifestation and perpetuation of GvHD in recipients of allogeneic bone marrow transplants (BMT).

POLYMORPHISM WITHIN TNF-ENCODING GENES

The TNF genes are located within the class III region of the human MHC, telomeric to the HLA class II and centromeric to the HLA class I region (Fig. 1). This region consists of at least 3 functional genes encoding TNF-α, TNF-β (also known as lymphotixin (LT)-α), and LT-β. Genes of the TNF locus map at ~1000 kb telomeric to the DR and ~1300 kb centromeric to the B locus in the human MHC.

In humans, genes located within the MHC, especially HLA class I and class II loci, characterize by enormous polymorphism. A number of genetic markers have also been identified for genes that map at the TNF locus. One of the first, a dimorphism within the first intron (+1069) of the TNFB gene, has been described. Genetic analyses have also revealed a G to A transition polymorphism at position ~308 in the promoter/enhancer region, an AP-2 transcription binding site, of the TNFA gene. TNFA*1 (TNF1) and TNFA*2 (TNF2) alleles are carried by individuals having, respectively, G or A at the ~308 polymorphic position of the TNFA promoter.

Polymorphism within the TNFA and TNFB genes (~308 and +1069, respectively) can be analyzed by polymerase chain reaction (PCR) amplification followed by NcoI digestion of the obtained amplificats. Polymorphism in the TNFA region is characterized by other nucleotide substitutions in the next 8 positions: +70 (G/A), –1031 (T/C), –163 (G/A), –238 (G/A), –308 (G/A), –376 (G/A), –574, –856 (C/T), and –862 (C/A). Polymorphism within the TNFA and TNFB genes (~308 and +1069, respectively) can be analyzed by polymerase chain reaction (PCR) amplification followed by NcoI digestion of the obtained amplificats. In brief, with the use of specific primers (TNFA: 5’-AGGCGATAAGGTGGAGGACC AT-3’ and 5’-TCCTCCCTGCTGGATTCG-3’, TNFB: 5’-CCGTGCTTCGTGCTTTGGAC TA-3’ and 5’-AGAGGGGTGGAATGCTGGTTTAGC-3’), the 107 bp product (with induced NcoI restriction site) and 782 bp fragments are amplified for the promoter region of the TNFA gene and the first intron of the TNFB gene, respectively. Then, PCR products are digested with NcoI restriction enzyme and analyzed on agarose gel. For visualization of the TNFB and TNFA alleles, 2 and 4% gels are used, respectively. Electrophoresis demonstrates the original 107 bp fragment (homozygous individuals TNFA*2 allele, lacking the NcoI site), three fragments of 107, 87 and 20 bp of length (heterozygous individual), and two fragments of 87 and 20 bp (homozygous individual) for the allele TNFA*1). A similar pattern is seen for the TNFA alleles. The restriction digests of the TNFB amplificats generate fragments of 586 and 196 bp or 782 bp for TNFB*1 or TNFB*2 homozygous individuals, respectively. For heterozygous individuals, three fragments (196, 586 and 782 bp) are detected.
Table 2 shows the allele frequencies of the TNFA and TNFB loci in a panel of randomly selected normal healthy individuals. The TNFA*1 allele, in contrast to the TNFA*2, is the most frequent TNF allele, present in over 85% of all individuals studied. TNFB*2 is rarer than TNFA*1, but occurs more frequently than the TNFB*2 allele.

Besides NcoI alleles, also a number of microsatellites have been mapped within the TNF locus. These short repetitive sequences occasionally appear not only in non-coding regions, but within the coding regions of particular genes as well. They may function in different ways, which are currently not well understood. So far, 5 different TNF microsatellites have been identified. One of these in particular, TNFd, a (GA)n repeat microsatellite sequence, has been mapped downstream of the TNF-α encoding gene within intron 3 of the nearby leukocyte-specific transcript-1 gene.

The presence of TNF microsatellites can be detected by using unique primers and PCR to amplify the microsatellite-containing region and measuring the length of the amplified fragments. Alternatively, amplified DNA fragments can be analyzed by sequencing.

According to the summarized data, among the TNFd microsatellites TNFd3 is the most frequent, then d4 and d1, followed by d5, d2, while d6 and d7 occur very rarely (Fig. 2).

Figure 2. Frequencies of TNF microsatellite alleles based on the data of: 80 bone marrow transplant (BMT) recipients, 28 unselect ed normals, 57 patients with chronic lymphocytic leukemia (CLL), 100 patients with Hodgkin’s disease (HD), and a panel of 105 cell lines from the American Society of Histocompatibility and Immunogenetics Workshop and the Center for Human Polymorphism Studies reference panels of HLA typing cell lines.

Table 2 shows the allele frequencies of the TNFA and TNFB loci in a panel of randomly selected normal healthy individuals. The TNFA*1 allele, in contrast to the TNFA*2, is the most frequent TNF allele, present in over 85% of all individuals studied. TNFB*2 is rarer than TNFA*1, but occurs more frequently than the TNFB*2 allele.

Besides NcoI alleles, also a number of microsatellites have been mapped within the TNF locus. These short repetitive sequences occasionally appear not only in non-coding regions, but within the coding regions of particular genes as well. They may function in different ways, which are currently not well understood. So far, 5 different TNF microsatellites have been identified. One of these in particular, TNFd, a (GA)n repeat microsatellite sequence, has been mapped downstream of the TNF-α encoding gene within intron 3 of the nearby leukocyte-specific transcript-1 gene.

The presence of TNF microsatellites can be detected by using unique primers and PCR to amplify the microsatellite-containing region and measuring the length of the amplified fragments. Alternatively, amplified DNA fragments can be analyzed by sequencing.

According to the summarized data, among the TNFd microsatellites TNFd3 is the most frequent, then d4 and d1, followed by d5, d2, while d6 and d7 occur very rarely (Fig. 2).

Figure 2. Frequencies of TNF microsatellite alleles based on the data of: 80 bone marrow transplant (BMT) recipients, 28 unselected normals, 57 patients with chronic lymphocytic leukemia (CLL), 100 patients with Hodgkin’s disease (HD), and a panel of 105 cell lines from the American Society of Histocompatibility and Immunogenetics Workshop and the Center for Human Polymorphism Studies reference panels of HLA typing cell lines.

Table 2. Frequencies of TNF alleles in healthy individuals and patients with hematological disorders

<table>
<thead>
<tr>
<th></th>
<th>TNFA*1</th>
<th>TNFA*2</th>
<th>TNFB*1</th>
<th>TNFB*2</th>
<th>Number of cases</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy individuals</td>
<td>0.85</td>
<td>0.15</td>
<td>0.31</td>
<td>0.69</td>
<td>130</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>0.19</td>
<td>0.35</td>
<td>0.65</td>
<td>216</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.15</td>
<td>0.24</td>
<td>0.76</td>
<td>124</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.84</td>
<td>0.16</td>
<td>0.26</td>
<td>0.74</td>
<td>117</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>0.86</td>
<td>0.14</td>
<td>–</td>
<td>–</td>
<td>51</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>0.84</td>
<td>0.16</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>Patients with hematological disorders</td>
<td>0.89</td>
<td>0.11</td>
<td>0.30</td>
<td>0.70</td>
<td>125</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.945</td>
<td>0.055</td>
<td>0.26</td>
<td>0.74</td>
<td>73 (CLL)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>0.19</td>
<td>0.38</td>
<td>0.62</td>
<td>76 (B–CLL)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>0.33</td>
<td>0.66</td>
<td>54 (NHL)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>0.82</td>
<td>0.18</td>
<td>–</td>
<td>–</td>
<td>49 (CLL)</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.22</td>
<td>–</td>
<td>–</td>
<td>49 (CLL)</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.15</td>
<td>–</td>
<td>–</td>
<td>36 (HD)</td>
<td>77</td>
</tr>
</tbody>
</table>

* Recipients of allogeneic HCST suffered from different hematological disorders.

Original results are given in bold. All the patients included in this study are of Polish origin and were transplanted at the Lower Silesian Center for Cellular Transplantation with the National Polish Bone Marrow Donor Registry (formerly BMT Unit, K. Dlubski Hospital) in Wrocław.
Bouma et al. documented that individuals carrying the TNFA*2 allele secrete higher levels of TNF-α. It has been suggested that high levels of TNF-α secretion after mitogen stimulation of peripheral blood lymphocytes from BMT recipients may be associated with the TNFA*2 allele. The increased TNFA gene expression related to the TNFA*2 allele has also been reported by other groups (i.e., TNFA*2 allele54). However, there is some conflicting data which suggests that TNFA (–308) polymorphism has no effect on TNFA gene expression17, 33, 39, 71, 74.

Similar to some reports on TNFA polymorphism, it has been suggested that the polymorphic pattern of the TNFB gene also correlates with the TNF-β response of mitogen-stimulated peripheral blood mononuclear cells (at the mRNA and protein level)55. It has been shown that the level of TNF-β secreted correlates with the TNFB genotype in healthy individuals: those with the TNFB*2 allele secretes significantly higher levels of TNF-β than those with the TNFB*1 allele. In insulin-dependent diabetes mellitus (IDDM) patients, the reverse situation was observed76.

In addition to the associations described for TNFA and TNFB NcoI alleles, some relationships have also been found between the presence of particular TNF microsatellites and TNF-α and TNF-β production. The TNFd3 microsatellite allele has been reported as being associated with higher in vitro TNF-α production in cells derived from immunesuppressed heart transplant recipients71. TNFa6 has been correlated with decreased TNF-α secretion, while TNFa2 has been associated with increased TNF-α secretion60. Among IDDM patients, individuals carrying either TNFa2 or TNFa9 have presented with greater TNF-α production, while those positive for TNFa13 have lower TNF-α production than patients with non-TNFA2, a9, and a13 alleles59.

Relationships between TNF alleles and HLA class I and II loci and their effect on TNF-α and TNF-β secretion

The TNFA and TNFB genes are located within the human MHC complex, between the HLA class I and HLA class II loci (Fig. 1). This close localization favors associations between HLA class III (TNF) and other HLA loci. Therefore, some relationships between the polymorphic pattern of TNF-encoding genes and the presence of particular HLA class I and/or HLA class II specificities have also been identified (please note Table 3). For example, very strong associations have been shown for the A1 B8 DR3 DQ2 haplotype with a rare TNFA*2 allele and between this TNFA allele and TNFB*1. These in turn have been shown to affect TNF production. It has been documented that TNF-α secretion could be influenced by HLA-associated features; for example, with high secretion potential among DR3 and DR4 and low among DR5 normals60 (Table 4). Inducibility of TNF-α has also been found to be low for DR2-positive systemic lupus erythematosus patients and high for those having HLA-DR3 and DR4 genotypes60. The results of other study have demonstrated higher TNF-α activity in culture supernatants of (A1, B8, DR3) lymphoblastoid cell lines than that present in the supernatants from cells homozygous for eight different MHC ancestral haplotypes1 (Table 4).

Table 3. Association between HLA and TNF alleles

<table>
<thead>
<tr>
<th>Haplotypes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 B8 DR3 TNFA*2</td>
<td>2, 78</td>
</tr>
<tr>
<td>A1 B8 DR3 TNFA2 DQA10501 DQB1*0201</td>
<td>15</td>
</tr>
<tr>
<td>TNFA2 A TNFB1 (5,5)</td>
<td>60</td>
</tr>
<tr>
<td>A2 B44 TNFa6 TNFB*1 DR4 DQ8</td>
<td></td>
</tr>
<tr>
<td>A2 B15 TNFa2 TNFB*2 DR4 DQ8</td>
<td></td>
</tr>
<tr>
<td>A2 B40 TNFB*1 DRL</td>
<td></td>
</tr>
<tr>
<td>A1 B8 TNFB*1 DR3 DQ2</td>
<td></td>
</tr>
<tr>
<td>B18 TNFs TNFa1 TNFB2 TNFc2 DRB10301 DQA10501 DQB10201</td>
<td>62</td>
</tr>
<tr>
<td>B18 TNFs TNFa1 TNFB2 TNFc2 DRB10301 DQA10501 DQB10201</td>
<td></td>
</tr>
<tr>
<td>Bw62 DR4 TNF*B2</td>
<td>76</td>
</tr>
<tr>
<td>TNFA1 TNFB2</td>
<td>11, 12</td>
</tr>
<tr>
<td>TNFA2 TNFB1</td>
<td></td>
</tr>
<tr>
<td>TNFA2 TNFB1 DR3</td>
<td></td>
</tr>
<tr>
<td>TNFA1 TNFB1 DR1</td>
<td></td>
</tr>
<tr>
<td>TNFA1 TNFB2 DR6 and/or DR7</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Markers associated with increased expression of TNF-α-encoding gene

<table>
<thead>
<tr>
<th>Genetic marker</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NcoI alleles</td>
<td>TNFA*2 14, 38, 47, 48, 54, 68, 80</td>
</tr>
<tr>
<td>Microsatellite</td>
<td>TNFa2 59, 60</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>DR3 1, 40, 60</td>
</tr>
<tr>
<td>DR4 40, 60</td>
<td></td>
</tr>
</tbody>
</table>

TNF POLYMORPHISM AND HSCT OUTCOME

NcoI TNFA (–308) and TNFB (+1069) polymorphisms do not affect development of aGvHD

Very early studies from our research group suggested that (–308) polymorphism within the TNFA promoter region might influence the manifestation of
aGvHD in alloHSCT recipients7,10. In these analyses, 39 recipients of HLA-matched sibling transplants and, for comparison, 51 healthy individuals were investigated. It was found that patients were more frequently TNFA*1,1 than controls and that all the patients with fatal aGvHD complications were homozygous for TNFA*1. Patients rarely had the TNFA*1,2/TNFB*1,2 genotype, and an association of TNFA*1,1 with TNFB*1,1 was seen only in 3 out of 39 patients, but not in controls. Furthermore, all patients carrying the TNFA*1,1 TNFB*1,1 genotype suffered from aGvHD. In concordance with this data, a study by Mayer et al.54 on 53 chronic myeloid leukemia patients receiving allogeneic BMT also indicated a possible role of TNFα –308 polymorphism in severe GvHD due to the increased secretion of TNF-α.

The first studies on TNFB gene polymorphism in recipients of allogeneic HSCT reported a higher incidence of TNFB heterozygous cases among patients with aGvHD, especially in those who received aggressive chemotherapy (receiving thio-tepa or etoposide in addition to busulphan and cyclophosphamide)50, 51. However, our further analyses have not confirmed these observations8,9 of an association between TNF polymorphisms of the recipient and anGvHD incidence. No relationship has been observed between either TNFA (–308) and/or TNFB (+1069) polymorphism and the manifestation of aGvHD complications5. This concurred with other published data, as a lack of association between TNFA polymorphism in the (–308) position and incidence of aGvHD in allogeneic HSCT recipients has also been reported by other groups54, 56, 70. In our more recent studies, TNFA and TNFB alleles have shown similar distributions in patients and control individuals. A higher rate of TNFA*1 homozygotes has been found to characterize patients and controls, but (in contrast to the previous data) without significant difference between both groups (not shown). In both patients and healthy individuals, TNFA*1 appeared as the greatest and TNFB*2 as the least frequently seen of the TNFA and TNFB alleles5 (Table 2). Comparable frequencies of TNF alleles in hematological patients have been documented in other studies (Table 2).

Microsatellite polymorphism within the gene encoding TNF-α and the incidence of aGvHD and early mortality

As discussed above, no association has been found between TNFA polymorphism in the –308 position and manifestation of aGvHD. However, the studies by Middleton et al.56 and Kogler et al.56 have documented the association of aGvHD (grades III–IV) complications post hematopoietic stem cell transplantation with the presence of the d3 homozygous allele in bone marrow and cord blood transplant recipients, respectively. In more detail, the TNFd3 homozygous allele has been documented as being preferentially associated with more severe (III–IV) GvHD grades (in 7 out of 11 patients) compared with its occurrence in 8 out of 38 patients with no or mild GvHD (grades 0–II)56. In this study, 49 patients transplanted from HLA-matched sibling donors using only cyclosporine A monotherapy were investigated. Interestingly, results of this analysis were also correlated with in vitro skin explant results in 32 of the 49 patient donor pairs tested57. The d3 allele of the TNFd microsatellite preferentially associated with the more severe GvHD grades III–IV and with positive (grade II or above) skin explant assays. However, these observed relationships between TNFd3 and GvHD outcome were not seen in an extended study involving a larger group of BMT recipients (144 cases) receiving both cyclosporine A and metotrexate prophylaxis. In this group of patients, the presence of TNFd3 was found to correlate with early mortality20. More TNFd3/d3-positive patients died before day 30 than non-TNFd3/d3 recipients. In addition, the presence of TNFd3/d3 homozygotes, associated with the risk of transplant-related complication in HSCT patients, has been also shown to affect organ transplants, for example to associate with increased rejection in cardiac transplant recipients22.

TNFA (–308) and TNFB (+1069) polymorphism and manifestation of toxic complications

Relationships between cytokine gene polymorphisms and the generation of severe toxic lesions have been extensively analyzed by our research group and, in fact, all results known so far come from our studies8,9, 49,51. Our first observations suggesting a possible influence of TNFA heterozygous genotypes on the manifestation of severe toxic lesions in patients after allogeneic HSCT were presented in 1999 during the 25th Annual Meeting of the European Group for Blood and Marrow Transplantation (Hamburg, Germany)50 and the 13th Meeting of the European Federation for Immunogenetics (Crete, Greece)51. In these studies, 72 and 97 recipients of allogeneic stem cells were investigated, respectively. It was found that in patients on standard conditioning regimen a high degree of toxicity was present more frequently in TNFA*1,2-positive individuals. In the next analyses, homozygous patients carrying the TNFB*2 allele were found to suffer less frequently from severe (grades III and
IV) toxic complications. Please note that in all our studies regarding the susceptibility to toxic complications, toxicity was evaluated according to the World Health Organization standard criteria (for detail see: www.fda.gov). The highest grade of toxic complications seen in any of the evaluated organs (mucosa, skin, liver, and gut) was regarded as the representative value of toxicity seen in an individual patient.

The extended studies proved our preliminary data on the influence of TNF polymorphic features on the generation of severe toxic lesions in recipients of allogeneic HSCT. A higher incidence of toxic complications was seen among patients heterozygous for TNFA and/or TNFB, while lower in those carrying the TNFB*2,2 homozygous genotype. In the first of these studies, patients with hematological malignancies grafted from sibling, alternative, or matched unrelated donors were analyzed. Recipients carrying the TNFB*2 homozygous genotype suffered less frequently from severe grades II–IV and grades III–IV toxic complications, while those having the TNFA*1,2 and/or TNFB*1,2 genotype were found to be more susceptible to developing severe (grade III–IV) toxic lesions.

More detailed analysis focused on a group of patients with hematological malignancies, recipients of HLA-matched sibling transplants, were concordant with the previous results. Also in this cohort of patients, TNFA*1,2 and TNFB*1,2 were found to be associated with increased risk of developing severe grades III–IV toxic lesions, while TNFB*2 and TNFA*1 homozygosity had a protective role (Fig. 3). This effect was independent of the severity of the conditioning regimen. The associations between TNF heterozygotes differed from those characterizing TNFA*1 and TNFB*2 homozygous patients. It has been shown that the two latter genotypes (TNFA*1,1 together with TNFB*2,2), in a combined associated fashion, play a protective role, while TNFA*1,2 in TNFB*1,2-negative individuals and TNFB*1,2 in those having TNFA*1,2 influence the development of severe (grades III–IV) toxic lesions.

Interestingly, our preliminary study regarding the outcome of alternative (HLA haplo-identical and matched unrelated) transplants have suggested that in HLA-A, -B, -DR matched alternative settings differences in TNF alleles may influence the risk of aGvHD. This study involved 25 patient-donor pairs. It appeared that lack of HLA-A, -B, -DR matching between patients and donors did not affect matching of TNFA and TNFB alleles. Only in 1 out of 7 cases where patients and donors were not matched at one of the HLA class I or II loci (A, B, DR) were differences in TNFA and TNFB polymorphic features detected. Among A-, B-, DR-matched patients-donor pairs, typing results at TNF loci were discrepant in 7 cases. In 5 out of these 7 cases, patients developed aGvHD (grade II–IV). The incidence of aGvHD complications in alternative settings were more frequent in A-, B-, DR-matched, TNF-mismatched transplants than in A-, B-, DR-, TNF-matched transplants (0.71 vs. 0.27, p = 0.088, Fig. 4). Obviously, these results need to be confirmed on larger cohorts of donor-recipient pairs.

Figure 3. Manifestation of grades III-IV toxic complications in alloHSCT recipients in relation to TNF genotypes. There is an increased frequency of patients presenting with severe toxic complications among heterozygous individuals carrying TNFA*1,2 (9/10 vs. 30/60, p < 0.05), TNFB*1,2 (20/26 vs. 19/44, p < 0.01) and TNFA*1,2 TNFB*1,2 (9/9 vs. 30/61, p < 0.005). Toxicity was evaluated accordingly to the World Health Organization standard criteria. The highest grade of toxic complications seen in any of the evaluated organs (mucosa, skin, liver, and gut) was regarded as the representative value of toxicity seen in the individual patient.

Figure 4. Influence of TNF incompatibility on the incidence of grades II-IV acute GvHD in HLA-A, -B, -DR-matched alternative HSCT. A higher incidence of aGvHD was observed among patients undergoing HLA-A, -B, -DR-matched TNF-mismatched transplants than those grafted from HLA-A, -B, -DR, TNF-matched donors (0.71 vs. 0.27, p = 0.088).

CONCLUSIONS

It has been shown that cytokine gene polymorphisms, in particular alleles at the TNF loci, affect the incidence and severity of post-transplant complications. Thus, the pre-transplant analysis of the patients'
genetic predisposition may be considered an important factor allowing the classification of the transplant recipients as less or more susceptible to developing either toxic lesions or severe and/or fatal aGvHD. Therefore, patient-donor genotyping, extended to the cytokine loci, may be of prognostic value for the transplantation outcome (for the generation of toxic lesions or the course of GvHD, as shown, for example, for HLA-DR and TNF-α or HLA-DR and IFN-γ in other disease). These results could then be used to tailor GvHD prophylaxis and/or to help in donor selection when more than one sibling or matched unrelated donor is available, together with aiding the development of therapeutic strategies, possibly with the use of anti-cytokine therapies or prophylaxis.

REFERENCES

248

