CD80 and CD86 Expression on LPS-Stimulated Monocytes and the Effect of CD80 and CD86 Blockade on IL-4 and IFN-γ Production in Nonatopic Bronchial Asthma

RYSZARD RUTKOWSKI1*, TADEUSZ MONIUSZKO2, ANNA STASIAK-BARMUTA1, BOŻENA KOŚTYŁA-HOJNA3, MAREK ALIFIER4, KRZYSZTOF RUTKOWSKI5 and ANETTA TATARCZUK-KRAWIEL6

1 Department of Pediatric Allergology, 2 Department of Allergology and Internal Medicine, 3 Department of Otolaryngology, 4 Department of Neonatology Medical University, 5 Student of Medical University, 6 GlaxoSmithKline, Białystok, Poland

Abstract. CD80 and CD86 seem to play an important role in the allergen-induced secretion of interleukin (IL)-5 and IL-13. Up to now, the expressions of CD80 (B7.1) and CD86 (B7.2) on monocytes and the kinetics of the expression of these molecules on lipopolysaccharide-stimulated monocytes in nonatopic asthma have not been defined. Using monoclonal antibodies, we have compared the expressions of CD80 (B7.1) and CD86 (B7.2) on the monocytes of healthy persons and nonatopic asthmatic patients. We have also assessed the effect of CD80 and CD86 inactivation on IL-4 and interferon (IFN)-γ production in nonatopic asthmatics and healthy subjects. We found that a low expression of CD80 (1.64±0.65 vs. 3.53±1.43%) and a moderate expression of CD86 (41.25±13.4 vs. 49.46±11.49%) on the studied monocytes were characteristic for asthma. In nonatopic asthma patients inactivation of CD80 or CD86 blockade significantly reduced IFN-γ production by T lymphocytes (p<0.02; p<0.03). In both the studied groups, anti-CD80 antibodies did not diminish T lymphocyte production of IL-4. However, anti-CD86 antibodies significantly (p<0.04) reduced the IL-4 concentration in culture supernatants. Our results confirm that both the CD80 and CD86 molecules play an important role in the maintenance and amplification of the inflammatory process. It suggests that in the inflammatory process that occurs in nonatopic bronchial asthma, Th1 as well as Th2 lymphocytes are equally important.

Key words: CD80 (B7.1); CD86 (B7.2); IL-4; IFN-γ; monocytes; lymphocytes; nonatopic bronchial asthma.

Introduction

In two different studies, marked increases in the number of CD68+ macrophages and granulocyte-macrophage colony-stimulating factor receptor α (GM-CSFRα) mRNA-positive cells were observed in biopsies taken from nonatopic compared with atopic asthma patients20, 29. This may suggest some form of macrophage dysfunction in nonatopic bronchial asthma19, 20, 29. Macrophages, as monocytes, dendritic cells and B cells, are known to be professional antigen-presenting cells (APCs)25, 39. The important role of the co-stimulatory molecules CD80 (B7.1) and CD86 (B7.2) expressed on alveolar macrophages in allergen presentation to T helper (Th)2 lymphocytes in allergic bronchial asthma, hypersensitivity pneumonitis, and interstitial lung diseases is well established2, 6, 22, 27. Similarly, expression of CD86 on monocytes is significantly
increased on cells cultured in the presence of antigen in allergic rhinitis subjects and Crohn’s disease31, 40. The process of T lymphocyte activation, proliferation and cytokine production requires the engagement of the T cell receptor (TCR) with a major histocompatibility complex II/peptide complex and cross-linking of CD80 (B7.1) and CD86 (B7.2) co-stimulatory molecules, on APCs with CD28 or cytotoxic T lymphocyte antigen 4 (CTLA-4) on the T cell surface4, 8, 11, 14.

CD80 and/or CD86 are important in allergen-induced secretion of interleukin (IL)-5 and IL-1323, 24, 30. Both CD80 and CD86 are able to co-stimulate IL-4, IL-5 and interferon (IFN)-γ production in the murine model of allergic pulmonary inflammation33, 34. CD80 and CD86 play important roles in the differentiation of Th1 or Th2 phenotypes32, 38. Both molecules act complementary in inducing development of allergic pulmonary infiltration, but CD86 seems to play a more important role in allergic reactions and atopic asthma24, 32, 33.

One cannot rule out the possibility that abnormal monocytes/macrophages activation is connected with impaired expression of CD80 and CD86. Unfortunately there is no evidence of the role of these co-stimulatory molecules in nonatopic (intrinsic) asthma. The diagnosis of nonatopic bronchial asthma was established in each case according the NHLBI/WHO criteria21. Spirometry measurements were performed according to American Thoracic Society/European Respiratory Society (ATS/ERS) criteria with commercially available Pneumoscreen II (Erich Jaeger GmbH, Wurzburg, Germany). Mean resting spirometric parameters in the bronchial asthma group indicated moderate obstruction: FEV\textsubscript{1} = 62.7±6.6%, FEF\textsubscript{25–75} = 54.7±9.1%, FVC = 80.4±9.1% of predicted values. At least 20% reversibility of FEV\textsubscript{1} was achieved in each patient after salbutamol inhalation (400 µg). All patients were non-smokers, had no history of atopy, had serum immunoglobulin (Ig)E within the normal range (34.1±18.6 IU/ml), and negative skin-prick tests to a panel of common allergens (house dust mite, grass pollen, tree pollen, cat and dog). Patients who had received any systemic corticosteroid therapy within the preceding 4 weeks were excluded from the study. Other medications such as inhaled long-acting β-mimetics, inhaled corticosteroids or oral slow-released theophylline were stopped 24 h before blood sampling. At the time of the study the patients presented no physical signs of asthma exacerbation and did not suffer from any infection (controlled by total leukocyte count, ESR and serum CRP levels).

The control group consisted of 22 healthy individuals, non-smokers (12 females, 10 males, mean age 43±11.2 years). All of the patients were treated in the Department of Allergology and Internal Medicine of the University Hospital, Białystok, Poland. Each patient had suffered from bronchial asthma for from 12 to 26 years before the study.

Materials and Methods

Subjects.

The study was performed on 42 patients with moderate nonatopic bronchial asthma (20 females, 22 males, mean age 43±11.2 years). All of the patients were treated in the Department of Allergology and Internal Medicine of the University Hospital, Białystok, Poland. Each patient had suffered from bronchial asthma for from 12 to 26 years before the study. The diagnosis of nonatopic bronchial asthma was established in each case according the NHLBI/WHO criteria21. Spirometry measurements were performed according to American Thoracic Society/European Respiratory Society (ATS/ERS) criteria with commercially available Pneumoscreen II (Erich Jaeger GmbH, Wurzburg, Germany). Mean resting spirometric parameters in the bronchial asthma group indicated moderate obstruction: FEV\textsubscript{1} = 62.7±6.6%, FEF\textsubscript{25–75} = 54.7±9.1%, FVC = 80.4±9.1% of predicted values. At least 20% reversibility of FEV\textsubscript{1} was achieved in each patient after salbutamol inhalation (400 µg). All patients were non-smokers, had no history of atopy, had serum immunoglobulin (Ig)E within the normal range (34.1±18.6 IU/ml), and negative skin-prick tests to a panel of common allergens (house dust mite, grass pollen, tree pollen, cat and dog). Patients who had received any systemic corticosteroid therapy within the preceding 4 weeks were excluded from the study. Other medications such as inhaled long-acting β-mimetics, inhaled corticosteroids or oral slow-released theophylline were stopped 24 h before blood sampling. At the time of the study the patients presented no physical signs of asthma exacerbation and did not suffer from any infection (controlled by total leukocyte count, ESR and serum CRP levels).

The control group consisted of 22 healthy individuals, non-smokers (12 females, 10 males, mean age 43±11.2 years). All of the patients were treated in the Department of Allergology and Internal Medicine of the University Hospital, Białystok, Poland. Each patient had suffered from bronchial asthma for from 12 to 26 years before the study. The diagnosis of nonatopic bronchial asthma was established in each case according the NHLBI/WHO criteria21. Spirometry measurements were performed according to American Thoracic Society/European Respiratory Society (ATS/ERS) criteria with commercially available Pneumoscreen II (Erich Jaeger GmbH, Wurzburg, Germany). Mean resting spirometric parameters in the bronchial asthma group indicated moderate obstruction: FEV\textsubscript{1} = 62.7±6.6%, FEF\textsubscript{25–75} = 54.7±9.1%, FVC = 80.4±9.1% of predicted values. At least 20% reversibility of FEV\textsubscript{1} was achieved in each patient after salbutamol inhalation (400 µg). All patients were non-smokers, had no history of atopy, had serum immunoglobulin (Ig)E within the normal range (34.1±18.6 IU/ml), and negative skin-prick tests to a panel of common allergens (house dust mite, grass pollen, tree pollen, cat and dog). Patients who had received any systemic corticosteroid therapy within the preceding 4 weeks were excluded from the study. Other medications such as inhaled long-acting β-mimetics, inhaled corticosteroids or oral slow-released theophylline were stopped 24 h before blood sampling. At the time of the study the patients presented no physical signs of asthma exacerbation and did not suffer from any infection (controlled by total leukocyte count, ESR and serum CRP levels).

The control group consisted of 22 healthy individuals, non-smokers (12 females, 10 males, mean age 43±11.2 years).

Flow cytometric evaluation of the peripheral blood components in healthy persons and nonatopic asthmatic patients (mean value ± SD)

<table>
<thead>
<tr>
<th>Component</th>
<th>Healthy persons (n=22)</th>
<th>Nonatopic asthmatics (n=42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (× 109/l)</td>
<td>5.90±1.39</td>
<td>6.67±1.52</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>6.48±1.39</td>
<td>7.04±1.76</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>38.40±4.77</td>
<td>30.40±5.72</td>
</tr>
<tr>
<td>CD3+ T lymphocytes (%)</td>
<td>70.84±4.04</td>
<td>68.38±5.83</td>
</tr>
<tr>
<td>CD4+ Th lymphocytes (%)</td>
<td>44.15±13.89</td>
<td>49.60±7.59</td>
</tr>
<tr>
<td>CD8+ T suppressor lymphocytes (%)</td>
<td>26.10±6.09</td>
<td>16.70±6.08</td>
</tr>
<tr>
<td>CD19+ B lymphocytes (%)</td>
<td>9.82±2.83</td>
<td>7.86±2.98</td>
</tr>
<tr>
<td>CD3+HLA-DR+ activated T lymphocytes (%)</td>
<td>5.64±1.89</td>
<td>8.65±3.03*</td>
</tr>
<tr>
<td>CD3−CD16−CD56− NK cells (%)</td>
<td>12.65±4.94</td>
<td>11.56±4.43</td>
</tr>
</tbody>
</table>

* p<0.001.
All of them had no history of asthma, allergy or other systemic disease within the last 2 years, had normal serum total IgE concentrations (27.3±15.3 IU/ml), negative skin-prick tests and normal FEV1 (mean 97.5±8.19%), FEF25-75 (mean 106.3±12.45%) and FVC (mean 96.45±8.8%) of predicted values.

All of the studied individuals had no significant changes in morphological blood parameters, except for the CD3⁻HLA-DR⁺ T cell subpopulation (Table 1). A full blood cell count, including an automated differential count, was performed with a Coulter MAXIM counter. Informed written consent was obtained from all the subjects before participation. The study was approved by the Ethics Committee of the Medical University in Białystok.

Peripheral blood mononuclear cell preparation. Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized venous blood by density gradient centrifugation on Lymphoprep (Nycomed, Birmingham, UK) according to Boyum.

CD80 and CD86 expression in monocyte cultures. Fresh CD14⁺ monocytes were separated by negative magnetic depletion using hapten-conjugated CD3, CD7, CD19, CD45RA, CD56, and anti-IgE monoclonal antibodies (mAbs) (Monocyte Isolation Kit; cat. no. 130053301) in an LS Column (cat. no. 13004042401; Miltenyi Biotec, Germany) for the MACS magnetic depletion using hapten-conjugated CD3, CD80, and CD86 antibodies. Freshly isolated peripheral blood monocytes from 200 µl of cultured monocytes were stained with 10 µl of anti-CD80 (hB7.1) mAbs (R&D Systems Inc., Germany) or 5 µg/ml anti-CD86 (hB7.2) mAbs (R&D Systems Inc., Germany). A 5:1 ratio of CD4⁺ T cells and monocytes was used on the basis of published data. The cells were cultured for 24 h. Supernatants were collected and stored at –70°C.

Flow cytometry analysis of cultured monocytes. The flow cytometry analysis of cultured monocytes. The 200 µl of cultured monocytes was stained with 10 µl of two-color mAbs anti-CD14 (PE)/anti-CD80 (FITC) or anti-CD14 (PE/anti-CD86 (FITC). After 30 min of incubation at 4°C, the samples were washed and suspended in PBS enriched with 2% fetal calf serum and 0.2% sodium azide (NaN₃). An minimum of 10⁴ monocytes was analyzed by EPICS XL flow cytometer (Coulter, USA). As a negative isotypic control, mouse IgM and IgG1 mAbs supplied by the same manufacturer were used.

Quantitation of cytokine production. Culture supernatants were stored at –70°C for all subjects until cytokine measurement. The lymphocyte production of IL-4 and IFN-γ were measured using commercially available immunoenzymatic kits from ELISA Quantikine (R&D System Inc., USA). The procedure was performed strictly according to the manufacturer’s instructions. Measurements were done in triplicate and mean values were used for further statistical evaluation. The sensitivities of IL-4 and IFN-γ detection were respectively 3 pg/ml and 5 pg/ml.

Statistical analysis. Statistical analysis was performed using the U-Mann-Whitney and Wilcoxon paired test when appropriate; p values less than 0.05 were considered statistically significant. All statistical analysis was performed using Statistica 5.0 for MS Windows.

Results

Freshly isolated peripheral blood monocytes from patients with nonatopic bronchial asthma and healthy controls were analyzed by flow cytometry for the expression of CD80 (B7.1) and CD86 (B7.2). As shown in Table 2, CD80 expression on monocytes was equal 1.64±0.65% in the control group, and 3.53±1.43% in asthmatics. CD80 expression on freshly isolated monocytes in the group of nonatopic asthma patients was significantly higher compared to healthy volunteers (p<0.001), which suggests stronger activation of monocytes in asthma.

CD86 co-stimulatory molecules were present on 41.25±13.41% of the monocytes received from healthy individuals and 49.46±11.49% of the cells from non-
topic asthma patients (Table 2). 10 µg/ml LPS added to cultures of monocytes induced a significant increase in CD80 expression in both experimental groups. Monocytes of healthy persons were more sensitive to LPS stimulation. CD80 expression was markedly upregulated within 24 h after stimulation and was significantly higher in healthy subjects than asthmatics (60.39±11.88 vs. 43.23±17.3%, respectively). The most intensive expression of CD80 was achieved after 24 h of culture in both nonatopic asthmatics and healthy persons, but a significant decrease (42.48±16.1% in asthmatics vs. 35.75±12.9% in controls) 48 h after culture stimulation with LPS was observed (Table 3).

CD86 co-stimulatory molecules were more strongly induced on monocytes than were CD80, peaking at 6 h after exposure to LPS (82.55±13.01% in the healthy vs. 87.26±9.95% in the nonatopic asthma group) and gradually declined in the 24 and 48 h of observation. CD86 expression at 48 h of culture was significantly reduced and was equal to 23.70–68.10% in control and asthmatic patients, respectively (Table 4). There was still a significant difference between CD86 expression at 0 and 48 h of our experimental studies (p<0.02).

The LPS-induced CD80 increase was significant in both healthy and nonatopic asthma subjects (p<0.006) during all the periods of observation, but it was stronger in healthy subjects (Table 3). The maximal induction of CD80 (B7.1) observed at 24 h in the LPS-stimulated monocyte cultures in the control group, was 34 times higher than its expression at the beginning of the study (0 h). In contrast, monocytes in nonatopic bronchial asthma upregulated CD80 expression in 24 h of culture by only 11 times compared with the starting point of the experiment (0 h).

To determine whether a CD80 or CD86 co-stimulatory molecule blockade influences interleukin (IL)-4 and interferon (IFN)-γ production, we studied lymphocyte cultures enriched with monocytes in a proportion of 5.1. The cells were stimulated with anti-CD3 antibodies and then treated with anti-CD80 or anti-CD86 mAbs.

Anti-CD80 mAb treatment increased IL-4 concentrations in lymphocyte culture supernatants in both healthy and nonatopic asthma patients, but these effects were not statistically significant (p1–2<0.07, p4–5<0.07). In contrast, supernatants from assessed lymphocyte cultures in the presence of anti-CD86 mAb contained significantly less IL-4 in both the control and asthma groups (p1–3<0.04 vs. p3–4<0.04; Table 5). We did not observe any significant differences in IL-4 concentration in the two study groups during the blockade of CD80 molecules (p5–8<0.8). IL-4 concentrations were significantly higher in supernatants from lymphocyte cultures of nonatopic asthma patients (p3–6<0.002).

Table 2. CD80 and CD86 expression on freshly isolated monocytes from peripheral blood of healthy controls and nonatopic asthmatics

<table>
<thead>
<tr>
<th></th>
<th>CD80 (B7.1)</th>
<th>CD86 (B7.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>healthy (n=22)</td>
<td>nonatopic (n=42)</td>
</tr>
<tr>
<td>Mean value ± SD (% CD80 cells)</td>
<td>1.6±0.65</td>
<td>3.5±1.43</td>
</tr>
<tr>
<td>Range value (% CD80 cells)</td>
<td>0.3–2.4</td>
<td>0.5–5.72</td>
</tr>
<tr>
<td>U-Mann-Whitney test</td>
<td>p<0.001</td>
<td>p<0.02</td>
</tr>
</tbody>
</table>

Table 3. Kinetics of CD80 (B7.1) expression on LPS-stimulated human monocytes

<table>
<thead>
<tr>
<th></th>
<th>healthy persons (n=10)</th>
<th>nonatopic asthmatics (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>1.7±0.46</td>
<td>37.1±11.48</td>
</tr>
<tr>
<td>6 h</td>
<td>30.3±11.88</td>
<td>42.4±16.1</td>
</tr>
<tr>
<td>24 h</td>
<td>3.8±1.2</td>
<td>21.5±8.5</td>
</tr>
<tr>
<td>48 h</td>
<td>21×</td>
<td>34×</td>
</tr>
<tr>
<td>Mean value ± SD (% CD80 cells)</td>
<td>35.7±12.9</td>
<td>35.7±12.9</td>
</tr>
<tr>
<td>Increase of CD80 mean values</td>
<td>p1–2<0.006, p3–4<0.006, p5–6<0.006, p7<0.006, p8<0.006</td>
<td></td>
</tr>
<tr>
<td>U-Mann-Whitney test</td>
<td>p1–3<0.006, p2–4<0.005, p3–7<0.04, p4–8>0.05</td>
<td></td>
</tr>
</tbody>
</table>
As illustrated in Table 6, inactivation of the CD86 molecule on monocytes in PBMC (lymphocyte/monocyte ratio 5:1) cultures by the addition of saturated amounts of a blocking mAb resulted in inhibition of IFN-γ production in both healthy (2926 ± 1122 vs. 2368 ± 908 pg/ml) and nonatopic asthmatic individuals (2172 ± 875 vs. 1795 ± 896 pg/ml). IFN-γ production was significantly diminished only in cultures of asthmatics’ lymphocytes (p1–2<0.04, p1–3<0.006, p1–4<0.02, p5–6<0.006, p5–8<0.006, p3–8<0.02).

Treatment with anti-CD80 mAb led to a significant (p1–2<0.02) decrease in IFN-γ concentration of nonatopic asthma patient culture supernatants (1795 ± 896 pg/ml). In contrast to IFN-γ concentration in the asthma group, lymphocytes of healthy persons still produced high amounts of IFN-γ (2368 ± 908 pg/ml). Finally, IFN-γ secretion was significantly increased only in cultures of nonatopic asthma lymphocytes affected by added anti-CD86 antibodies (p4–6<0.03).

Discussion

In bronchial asthma, cells of monocyte/macrophage lineage participate in the production of proinflammatory cytokines and chemokines, especially in exacerbation of the disease. Polster and Burke conclude that the dysregulation of the immune response in asthma is related to a dysfunction in T cell/macrophage interaction. Monocytes and macrophages are necessary for the generation of cell-mediated responses by processing and presenting antigen to antigen-specific lymphocytes. Antigen presentation and T cell activation requires a second signal, which is given by co-stimulatory molecules.

We have confirmed that in nonatopic bronchial asthma, the CD80 and CD86 co-stimulatory molecules on...
fresly isolated and LPS-stimulated monocytes are overexpressed in comparison with the control group. Our data show similarly low CD80 expression and high numbers of CD86-positive resting monocytes in all our subjects when compared with other studies conducted on healthy persons. The proportion of CD80/CD86-positive monocytes in our study is very similar to results of investigations in which macrophages or B, or T cells received from patients with allergic asthma, allergic rhinitis or atopic dermatitis were assessed.

In our study, expression of both co-stimulatory molecules on freshly isolated peripheral blood monocytes from nonatopic asthma patients (in contrast to healthy persons) was significantly increased ($p>0.001$). The higher expression of these molecules on APC increases the ability of monocytes to present antigen to lymphocytes and suggests that both CD80 and CD86 may upregulate the inflammatory process in nonatopic bronchial asthma.

CD86 expression on resting monocytes in our study was equal to about 40% and was a few times higher than CD80 molecules expression on these cells. CD86 were induced on LPS-stimulated monocytes earlier than were CD80 molecules and reached maximal values after 6 h of culture.

This is in accordance with results of other investigators, which show that CD86 plays an important role in the early inflammatory reactions affecting the production of Th2 cytokines IL-4, IL-5, IL-13, IL-10 and Th2 proliferation. It is generally accepted, except by Burastero et al. and Harris et al., that the role of CD80 (B7.1) is less important in the induction of the allergic inflammatory process.

In our opinion, in nonatopic bronchial asthma both CD80 and CD86 could be involved in the pathomechanism of CD4+ lymphocyte dysfunction. The kinetics of CD80 expression on LPS-stimulated monocytes confirms that these co-stimulatory molecules are probably more important in the late period of inflammation, because we could observe maximal expression not before 24 h after stimulation. The later appearance of CD80 may prolong or increase the intensity of co-stimulatory signals delivered by the APC to the CD4+ T cells.

CD80 induction on APCs mainly affects Th1 lymphocyte proliferation and activity. Th1 cells are important in cellular response, in the late phase of inflammatory reactions. These CD4+ lymphocytes produce IFN-γ, a proinflammatory cytokine, which can diminish the activity of Th2 cells by biofeedback mechanism. The increased ratio of CD80-positive non-stimulated monocytes in nonatopic asthmatics and the lower CD80 expression on LPS-stimulated monocytes are further evidence that in nonatopic bronchial asthma both the CD80 and CD86 molecules have a specific role in the induction and maintenance of the disease.

CD80 blockade in our experiments upregulated IL-4 concentrations in lymphocyte culture supernatants in both the healthy and nonatopic asthma groups, but the increase was not statistically significant ($p_{1-5}>0.05$, $p_{5-20}>0.05$, respectively). The treatment of these cultures with anti-CD80 mAbs also significantly diminished IFN-γ production in the nonatopic asthma group ($p_{1-5}<0.04$). As the IL-4 concentration did not increase significantly and the IFN-γ production was reduced, we suggest that CD80 blockade mainly affected Th1 lymphocytes.

In conclusion, our results confirm that monocytes are involved in the pathogenesis of nonatopic bronchial asthma and both the CD80 and CD86 co-stimulatory molecules play an important role in the maintenance and amplification of the inflammatory process observed in airways. This suggests that in the inflammatory process that occurs in nonatopic bronchial asthma, Th1 as well as Th2 lymphocytes are equally important.

References

12. Fleischer J., Soethi E., Reiling N., Grage-Griebenow E., Flad H. D. and Ernst M. (1996): Differential expression and function of CD80 (B7-1) and CD86 (B7-2) on human peripheral blood monocytes. Immunology, 89, 592–598.

37. Moniuszko T., Rutkowski R., Kowal K. and Chyrek-Bo-
rowska S. (1998): The influence of human recombinant inter-
leukin 10 (hIL-10) on interleukin 1β (IL-1β) production by
peripheral blood monocytes from nonatopic asthma patients.
38. Morikawa H. and Nagashima S. (2000): The role of costimu-
ulatory molecules (B7-1 and B7-2) on allergen-stimulated
392.
40. Nakada M., Nishizaki K., Yoshino T., Okano M., Masuda
Y., Ohta N. and Akagi T. (1998): CD86 (B7-2) antigen on
B cells from atopic patients shows defective, antigen specific
upregulation. Allergy, 53, 527–531.
41. Nakada M., Nishizaki K., Yoshino T., Okano M., Yama-
114
mo T., Masuda Y., Ohta N. and Akagi T. (1999): CD80
(B7.1) and CD86 (B7.2) antigens on house dust mite-specific
T cells in atopic disease function through T-T cell interactions.
42. Poulter L. W. and Burke C. M. (1996): Macrophages and
43. Santin A. D., Hermonat P. L., Ravaggi A., Chiriva-Inter-
nati M., Cannon M. J., Hiserodt J. C., Pecorelli S. and
the differentiation of human dendritic cells vs macrophages
from blood monocytes in vitro. Immunobiology, 200, 187–204.
44. Tsuji B. S., Tsuji K., Einsle K., Kopp M. and Coyle
A. J. (1997): Costimulation through B7-2 (CD86) is required
for the induction of a lung mucosal T helper cell 2 (Th2) im-
une responses and altered airway responsiveness. J. Exp.
Med., 185, 1671–1679.
CD4+ cells in human allergic diseases. J. Allergy Clin. Immu-
nol., 100, 1–6.
46. Van Neerven R. J. J., Van De Pol M. M., Van Der Zee
J. S., Sterkema F. E. M., De Boer M. and Kapsenberg M. L.
Allergy, 28, 808–816.
47. Viksmann M. Y., Liu M. C., Bickel C. A., Schleimer R. P.
and Bochner B. S. (1997): Phenotypic analysis of alveolar
macrophages and monocytes in allergic airway inflammation.
Evidence for activation of alveolar macrophages, but not pe-
ripheral blood monocytes, in subjects with allergic rhinitis and

Received in February 2003
Accepted in July 2003