A Method for Directly Determining the Number of Dendritic Cells and for Evaluation of Their Function in Small Amounts of Human Peripheral Blood

SERGIUSZ MARKOWICZ*, HENRYK M. SKURZAK and JAN WALEWSKI

The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland

Abstract. Bone marrow-derived dendritic cells (DC) are highly potent antigen-presenting cells (APC) capable of initiating primary responses of naive T lymphocytes to antigen. Studies on DC in disease have been impeded by the lack of a defined method for accurate DC counting and for evaluation of their function in a small amount of blood. In order to detect and enumerate DC in whole peripheral blood preparations, we applied a direct two-color immunofluorescence method. Blood from healthy donors was stained with a mixture of fluorescein isothiocyanate (FITC)-conjugated monoclonal antibodies (mAbs) recognizing lineage-associated molecules (CD3, CD14, CD16, CD20, CD57) and phycoerythrin (PE)-conjugated anti-HLA-DR mAb. DC were identified as lineage marker negative (lin−), HLA-DR highly positive cells. The mean percentage of these cells present in peripheral blood leukocytes (PBL) was 0.54%, and the mean absolute DC count was 31.4 × 10³/l of blood. DC stained directly in whole blood were heterogeneous with regard to their expression of CD2 and CD4 molecules, and did not express CD80 and CD83 molecules. Expression of CD80 and CD83 on DC was induced following a multistep isolation procedure, including overnight culture. We demonstrated a significant primary proliferative response to keyhole limpet hemocyanin (KLH) in cultures of peripheral blood mononuclear cells (PBMC). Since primary proliferative response to neoantigens is entirely dependent on DC as APC, the cultures of unseparated PBMC stimulated with KLH can be used to evaluate DC function in a relatively simple test. This test does not require previous isolation of DC and T lymphocytes and, therefore, can be performed on a small amount of blood. The elaborated flow cytometric method of DC counting in blood and the proliferative test of DC-dependent primary response to neoantigen are currently being applied in an ongoing study on the effect of chemotherapy on DC number and function in cancer patients.

Key words: dendritic cells; dendritic cell phenotyping; primary proliferative response.

Author’s fees were financed by the Association for the Joint Administration of Copyright KOPPOL (Kielce, Poland) from funds collected on the basis of the Law on Author’s Rights.

* Correspondence to: Sergiusz Markowicz, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland, tel.: +48 22 644 54 24 ext. 26-60, fax: +48 22 644 90 85, e-mail: sergiusz@coi.waw.pl
Introduction

Bone marrow-derived dendritic cells (DC) are highly efficient antigen-presenting cells (APC) distributed in low numbers in various tissues (ref.10). DC induce both primary and secondary response to antigen. The capability to prime naïve T cells with an antigen is a unique feature of DC11, 13, whereas the response of memory T cells to recall antigen can be triggered also by other professional APC, i.e. macrophages or B cells.

Human DC are not readily accessible for study, since DC circulating in the blood constitute only a minor subpopulation of leukocytes. Peripheral blood DC content estimated by extrapolation from the yield of DC obtained after a multistep purification procedure was below 1% of PBMC. Peripheral blood DC, characterized following a complex isolation procedure, strongly express HLA-DR class II molecules and do not express markers of the monocyte, lymphocyte T and B, NK cell or granulocyte lineages8, 14, 25, and no marker uniquely expressed on human peripheral blood DC has been described to date. DC isolated from peripheral blood are functionally mature, as they elicit strong allogeneic and autologous MLR6, 14, 25 and sensitize naïve T cells to nominal antigens in vitro16, 17. DC pulsed with tumor-associated antigen and reinfused stimulate anti-tumor immunity in vivo12, 18.

A relatively large amount of blood has to be processed to obtain a sufficient number of isolated DC for any cytofluorographic analysis and for functional studies. Since complex methods of DC separation are not applicable to study DC in patients, there is little information on DC deficiencies in disease. Such information may be especially valuable for prospective use of DC as a natural adjuvant in attempts to develop anti-tumor immunity.

To elaborate a quantitative method to identify and count DC in whole peripheral blood, we have used a direct two-color immunofluorescence method based on the strong HLA-DR expression and the lack of lineage-associated molecules on the surface of these cells. In addition, we have verified the possibility of using the evaluation of proliferative responses to keyhole limpet hemocyanin (KLH) for functional assessment of circulating DC. The addition of IL-2 and IL-4 at small concentrations enhances the response of T lymphocytes to KLH 17, but does not induce proliferation of DC-deprived T lymphocytes in the absence of antigen (unpublished data).

Materials and Methods

Cell preparations. Peripheral blood was obtained from healthy adult donors. Freshly drawn blood samples (7 ml) were collected into Lithium heparin Vacutainer tubes (Becton-Dickinson). Buffy coats processed from blood collected in ACD were purchased from a blood bank.

PBMC were isolated by Ficoll-Urbonpleine gradient centrifugation 1. Cell fractions enriched in DC, monocytes and T lymphocytes were isolated by gradient centrifugation steps including Percoll (Pharmacia LKB, Sweden) and Nycoprep (Nycomed Pharma AS, Oslo, Norway) gradient as previously described 14, 16. This isolation procedure included overnight culture in teflon vessels.

Monoclonal antibodies and immuno-labeling. Fluorochrome-conjugated mAbs: anti-CD3 FITC, anti-CD14 FITC, anti-Leu-11a (CD16) FITC, anti-CD20 FITC, anti-Leu-7 (CD57) FITC, anti-CD2 FITC, anti-Leu-3a (CD4) FITC, anti-HLA-DR FITC, anti-HLA-DQ FITC, anti-HLA-DR PE, anti-CD80 PE and anti-HPCA-2 (CD34) PE were purchased from Becton-Dickinson. Anti-CD83 PE mAb was purchased from Immunotech. Mouse IgG1 and IgG2a controls FITC and PE-conjugated were purchased from Becton-Dickinson.

To identify DC, whole blood or diluted buffy coat samples were stained with a mixture of FITC-conjugated mAbs recognizing CD3, CD14, CD16, CD20 and CD57 lineage-associated molecules (lin cocktail) and anti-HLA-DR PE mAb. Buffy coat samples were diluted to a concentration of 10 × 10^6 PBL/ml with PBS w/o calcium and magnesium before immuno-labeling. Controls consisted of 1) unlabeled sample (auto-fluorescence control), 2) sample incubated with FITC- and PE-conjugated irrelevant IgG (isotype control) and 3) sample labeled with FITC-conjugated lin cocktail and control IgG2a PE. Direct two-color immunofluorescence staining was in general performed according to standard protocols recommended for Becton-Dickinson reagents. Blood was stained and lysed with FACS lysing solution (Becton-Dickinson) at room temperature in the dark within 5 h after drawing. To achieve complete lysis of red blood cells in samples stained with the mAb mixture, the lysing step was repeated twice. 20 000 or 30 000 events were acquired from every sample. Isolated PBMC fractions were stained at 4°C.

Stained samples were examined in a flow cytometer FAC’S’tar (Becton-Dickinson) equipped with Consort 30 version F software. Compensation was applied to correct for FITC emission entering the FL2 channel and for PE emission entering the FL1 channel. Gain settings were adjusted daily using standard labeled FITC and PE calibrate beads (Becton-Dickinson).

Proliferation assays. 50 × 10^3 or 100 × 10^3 PBMC were cultured in U-bottom microtiter wells (Nunc, Den-
In order to discriminate between lin$^-\text{HLA-DR}$ and lin$^{\text{dim}}$ cells in a sample stained with lin cocktail and mAb anti-HLA-DR. Since cells with the DC surface phenotype were not found in a gate encompassing granulocytes (data not shown), flow cytometry analysis was performed for events collected in a PBMC gate. A better discrimination between lin and lin$^{\text{dim}}$ cells was possible in a gate set for PBMC than in a gate set for PBL because of the relatively high fluorescence intensity of granulocytes stained with FITC-conjugated control IgG. DC percentage in the entire PBL population was back-calculated from the percentage of DC in PBMC and the proportion of PBMC in PBL.

Dendritic cells enumerated in whole peripheral blood from 11 healthy donors (M/F: 4/7, age: range 22–56 years, median 31 years) comprised 0.54±0.16% (mean±SD) of PBL (Table 1). The mean absolute DC count was 31.4±10^3/l of blood, SD ±9.6 × 10^3/l. DC content in PBL determined in 4 buffy coat preparations fell in the range of 0.29–0.86% determined in measurements performed on whole peripheral blood.

Dendritic cells stained directly in whole peripheral

<table>
<thead>
<tr>
<th>Donor</th>
<th>% of PBL</th>
<th>DC count/µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.29</td>
<td>14.6</td>
</tr>
<tr>
<td>2</td>
<td>0.56</td>
<td>32.7</td>
</tr>
<tr>
<td>3</td>
<td>0.47</td>
<td>20.4</td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
<td>30.9</td>
</tr>
<tr>
<td>5</td>
<td>0.86</td>
<td>40.2</td>
</tr>
<tr>
<td>6</td>
<td>0.63</td>
<td>45.7</td>
</tr>
<tr>
<td>7</td>
<td>0.50</td>
<td>31.4</td>
</tr>
<tr>
<td>8</td>
<td>0.42</td>
<td>43.5</td>
</tr>
<tr>
<td>9</td>
<td>0.39</td>
<td>18.1</td>
</tr>
<tr>
<td>10</td>
<td>0.82</td>
<td>33.8</td>
</tr>
<tr>
<td>11</td>
<td>0.47</td>
<td>33.8</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>0.54±0.16</td>
<td>31.4±9.6</td>
</tr>
</tbody>
</table>

Fig. 1. Detection of DC (lin$^{\text{HLA-DR}^\text{bright}}$) in peripheral blood by flow cytometry, 20 000 events in PBL gate were acquired from an unlabeled sample and the PBMC gate was set to determine a proportion of PBMC in PBL (a). Events which fell within the gate encompassing PBMC were collected from stained samples and displayed in plots of fluorescence intensity (log_{10} scale from 1 to 10^3). PBMC stained with FITC- and PE-conjugated irrelevant IgG (abscissa and ordinate, respectively) are shown in plot (b), PBMC stained with the FITC-conjugated lin cocktail and IgG1a PE control in plot (c), and PBMC stained with the FITC-conjugated lin cocktail and anti-HLA-DR PE mAb in plot (d). DC identified as cells which fell within the gate set for lin$^{\text{HLA-DR}^\text{bright}}$ cells in plot (d) in this example comprised 0.84% of PBMC population, and 0.39% of entire PBL population. DC percentage in PBL was back-calculated from their percentage in PBMC and the proportion of PBMC in PBL.
blood were not homogeneous in terms of expression of CD2 and CD4 molecules (Fig. 2). No cells with CD80 and CD83 molecules were found in whole blood preparations (data not shown). Expression of CD80 and CD83 on DC became, however, apparent following the isolation procedure including centrifugation on Percoll gradient, overnight culture and centrifugation on Nyco-prep gradient (Fig. 3). This procedure did not induce the expression of CD80 or CD83 molecules on CD14+ monocytes (Fig. 4).

The content of CD34+ cells and lin-HLA-DRbright cells was determined inuffy coat preparations and in DC-enriched fraction obtained by centrifugation on

Fig. 2. DC stained in whole blood vary in their expression of CD2 and CD4 molecules. The gate was set for HLA-DRbright cells, which did not stain with a mixture FITC-conjugated mAbs in plots displaying fluorescence intensity (log-scale from 1 to 10^4) of events collected in PBMNC gate. In this example DC identified as lin-HLA-DRbright cells comprised 0.84% of the PBMNC population (plot a). Lin-HLA-DRbright cells, which did not stain with anti-CD2 mAb, included in the mixture of mAbs used for staining, comprised 0.56% of PBMNC (plot b). Lin-HLA-DRbright cells, which did not stain with anti-CD4 mAb, comprised 0.47% of PBMNC (plot c).

Fig. 3. Flow cytometry analysis of the Percoll high-density, Nyco-prep low-density cell fraction enriched with dendritic cells. The DC-enriched fraction was obtained by centrifugation on Percoll gradient followed by overnight culture and centrifugation on Nyco-prep gradient. HLA-DQ, CD80 and CD83 expression was found mostly on lin-HLA-DRbright cells.

Fig. 4. Flow cytometry analysis of Percoll primary low-density cells enriched within CD14+ monocytes. Monocytes isolated by centrifugation on Percoll gradient and cultured overnight did not express CD80 and CD83 molecules.
Percoll and Nycoprep gradients. CD34+ cells co-purified with DC during the isolation procedure. However, the content of CD34+ cells both inuffy coat preparation and in the DC-enriched cell fraction was at least one order of magnitude lower than the content of lin− HLA-DRbright cells (data not shown).

KLH is a protein antigen to which healthy individuals are not sensitized and, therefore, is routinely used to detect primary responses of naive T cells. The primary proliferative response of CD4+ T cells to KLH is entirely dependent on DC, as previously shown in cocultures of isolated cell populations. In this study we investigated whether the primary proliferative response to KLH can also be detected in cultures of unseparated PBMC obtained from 16 healthy adult donors (Table 2). Mean values of [3H]-Tdr incorporation in PBMC cultures stimulated with KLH at the optimal concentration of 100 μg/ml for 7 days differed significantly from mean values in cultures without antigen, when analyzed by Friedman ANOVA followed by Wilcoxon matched pairs test (p<0.05). The proliferative response of PBMC stimulated with KLH in the presence of IL-2 and IL-4 differed significantly from the proliferative response of PBMC cultured with IL-2 and IL-4 in the absence of antigen.

Discussion

Identification of dendritic cells in human peripheral blood by flow cytometry is hindered by the lack of markers applicable for detection of circulating DC. Dendritic cells isolated from human peripheral blood do not express markers defining other leukocyte subsets and strongly express HLA-DR class II molecules, and therefore the lin− HLA-DRbright phenotype was a basis to discriminate DC from other leukocytes and to evaluate the purity of DC-enriched cell fractions. A better purification of DC was achieved by a negative panning procedure, utilizing a mixture of mAbs recognizing lineage-associated markers (lin cocktail). DC identified on the basis of their lin− HLA-DRbright phenotype are well characterized as antigen-presenting cells, capable of initiating primary response of naive T cells to antigen. GM-CSF promotes survival of peripheral blood DC in culture and induces their morphological differentiation in vitro to cells with long-branched projections.

DC are a small subset of PBMC. Complex purification procedures, which require preparation of relatively large volumes of blood, cannot be applied in studies of DC in disease. Therefore, our study was aimed at developing a method for the enumeration of DC directly in whole blood. We applied direct two-color immunofluorescence staining to detect cells of lin− HLA-DRbright phenotype, followed by lysis of erythrocytes. An alternative method of DC counting in whole blood, based on their lin− HLA-DR+ phenotype, was performed with the use of nuclear dye LDS-751 to distinguish nucleated cells in three-color flow cytometry analysis.

Identification of DC based on their lin− HLA-DRbright phenotype is not strictly specific, because cells of this phenotype may also include HLA-DR+CD34+ hematopoietic progenitors circulating in the blood. It has been reported that the mean absolute count of CD34+ hematopoietic progenitors enumerated directly in peripheral blood obtained from healthy donors was 1.68 × 10³ per 1 ml of blood. The absolute number of cells of lin− HLA-DRbright phenotype in our study was 3.14 × 10³ per 1 ml. Our preliminary experiments confirmed that CD34+ cells were at least one order of magnitude less numerous than the lin− HLA-DRbright cells, both in the entire PBL population and in the DC-enriched cell fractions obtained by a multi-step purification procedure. CD34+ cells vary in the expression of HLA-DR molecules and may not be encompassed by the gate set for HLA-DRbright cells. In our study, lin− HLA-DRdim cells were not counted as DC. However, it can be anticipated that the content of lin− HLA-DRbright cells which are not DC may increase in some diseases, especially when hematopoietic precursors are mobilized to peripheral blood. Since mature DC are CD34−, the enumeration of CD34+ cells may be helpful for discrimination between DC and hematopoietic progenitors. Hematopoietic progenitors circulating in human peripheral blood, common for monocytes and DC, are a potential source of DC. The CD34+ hematopoietic progenitors, isolated from bone marrow or umbilical cord blood, grow and differentiate in the presence of GM-CSF and TNF-α to mature DC with branched projections, identical in morphology with DC from the peripheral blood of adults induced to differentiate in the presence of GM-CSF.

It has been reported, that human blood contains a small population of lin− HLA-DR+ fibrocytes, which are CD34+ and, after isolation, express surface components required for antigen presentation. Blood-borne fibrocytes share many features with DC and the relation between these two cell types has to be further elucidated.

An alternative method for DC enumeration in blood preparations is based on the use of CMRF44 or CD83...
activation antigens, which are induced on DC isolated on Ficoll gradient and briefly cultured\(^6\), \(^7\). This method is, however, limited to the evaluation of DC content in the isolated PBMCN population. The cell separation procedure as well as PBMCN culture in vitro, with or without cytokines, may result in selective loss of different PBMCN subsets.

In this study we verified the suitability of anti-CD83 mAb for identification of DC in fractions obtained after the isolation procedure. However, in experiments performed on cultured cells, CD83 molecule cannot be used as a DC marker, since CD83 expression was inducible also on macrophages (ref.\(^16\)).

We confirmed previous reports\(^3\), \(^4\)\(^\text{12}\), indicating that the CD80 molecule is expressed on DC, but not on monocytes, after isolation and a brief culture in vitro. Monocytes express CD80 molecule when activated with IFN-\(\gamma\), \(^8\). In our study, direct staining of whole blood preparation did not reveal any CD80\(^+\) cells. Therefore, CD80 expression cannot be used for DC identification in whole blood preparations. Enrichment procedures and culture in general induce upregulation of various adhesion molecules on DC surfaces\(^13\), \(^24\).

Heterogeneous expression of CD2 and CD4 was previously reported\(^4\) on DC stained after the isolation procedure. In our study we found heterogeneous expression of CD2 and CD4 molecules also on DC stained directly in whole blood.

It has been previously shown that DC isolated from human peripheral blood primed naive CD8\(^+\) and CD4\(^+\) T cells to soluble antigens, whereas monocytes failed to induce such primary responses\(^16\), \(^17\). In this study we demonstrated that the primary proliferative response to KLH can be detected in cultures of unseparated PBMCN obtained from healthy donors. Therefore, PBMCN cultures stimulated with KLH can be used in a relatively simple test, performed on a small volume of blood to monitor DC-dependent priming of naive T cells. The test can be suitable in monitoring DC function in cancer patients undergoing chemotherapy, however, as it measures DC and T cell cooperation, the impaired responses may result either from DC or naive T cell dysfunction, or both.

Acknowledgment. This work was supported in part by grant no. 4 POSB 023 14 from the State Committee for Scientific Research (KBN).

References

8. Fleisch J., Soeth E., Reiling N., Grage-Griember E., Flad H.-D. and Ernst M. (1996): Differential expression of CD80 (B7-1) and CD86 (B7-2) on human peripheral blood monocytes. Immunology, 89, 592–598.

Received in November 1999
Accepted in April 2000