Histamine Receptor Expression on Peripheral Blood Lymphocytes Is Influenced by Specific and Nonspecific Activation

TERESA ŻAK-NEJMARK¹*, MARIA KRAUS-FILARSKA¹, JÓZEF MAŁOLEPSZY¹, RENATA JANKOWSKA², MAREK JUDET¹, IWONA A. NOWAK¹ and GRAZYNA NADOBNA¹

¹Department of Internal Medicine and Allergology, University Medical School, Wroclaw, Poland, ²Department of Pulmonology, University Medical School, Grabiszynska 105, 53-493 Wroclaw, Poland

Abstract. Histamine is a physiological mediator which exerts both effector and regulatory functions through its receptors on various cells. The aim of the study was to investigate changes in histamine receptor expression on peripheral blood lymphocytes affected by stimulation with both specific and nonspecific stimuli. Lymphocytes were obtained from both healthy and allergic subjects. Cells were incubated with various allergens (mixed grass pollen, Lolium perenne, Dermatophagoides pteronyssinus 1, bee venom, phospholipase A₂) and nonspecific (fMLP, PMA/ionomycin, LPS) stimuli. The percentage of histamine-binding cells was determined with a fluorescence microscope after incubation with histamine-fluorescein. In control subjects histamine binding after stimulation with allergens was not significantly changed. In contrast, in allergic subjects stimulation with specific allergens resulted in significantly increased histamine binding. Nonspecific stimulation caused increased histamine binding to lymphocytes in both allergic subjects and healthy controls. We conclude that specific and nonspecific activation of lymphocytes is associated with increased expression of histamine receptors.

Key words: histamine receptors; lymphocytes; specific activation.

Introduction

Histamine is a ubiquitous mediator of various biological reactions. In humans and other mammals, histamine is continuously produced and stored in granules of mast cells and basophils. Histamine binds to 4 types of histamine receptors: H₁, H₂, H₃ membrane proteins, and Hic which is an intracellular receptor⁵⁻⁹, ¹⁰. Binding of histamine to the H₁ receptor mediates allergic type I response, which manifests clinically as bronchial and intestinal smooth muscle contraction, peripheral vasodilatation, increased vascular permeability and pruritus⁶⁻²². Histamine is also shown to suppress inflammatory responses, acting through the H₂ receptor³, ⁴, ¹⁶. Histamine differentially affects the immune response. At concentrations higher than 10⁻⁵ mol/l it seems to suppress both humoral and cellular responses, whereas at lower concentrations it acts as an enhancer of both types of responses³, ¹⁸.

Histamine receptors are heterogeneous proteins, which bind different regions of histamine molecule. This different spatial relationship between histamine
and its receptors allows developing antagonists that bind specifically to various types of histamine receptors. Therefore, the final result of histamine action depends on both the number and type of receptors as well as their affinity to histamine present at the site of mediator release.

We investigated whether expression of histamine receptors on lymphocytes, involved in the regulation of allergic responses, is influenced by changes in the cellular milieu and whether specific and nonspecific activation of these cells induces changes in the expression of histamine receptors.

Materials and Methods

Subjects. The study was performed on 44 subjects. The control group comprised 10 healthy subjects aged 21–48 years with negative histories of atopy and without any symptoms of allergic diseases, 34 patients with documented histories of allergy: 6 house dust mite allergic, 8 bee venom allergic and 20 pollen allergic patients, aged 17–41 years. All allergic patients had positive skin prick tests with the specific allergen.

Reagents. Reagents used were: mixed grass pollen allergen (Bencard-Beecham, UK), *Lolium perenne* antigen extract (Biomed, Poland), bee venom (Apis mellifera) (ALK, Denmark), phospholipase A₂ (PLA₂), a major allergen of bee venom (Boehringer Ingelheim, Germany), Der. p. 1, a major allergen of *Dermatophagoides pteronyssinus* (ALK, Denmark), fMLP – N-formylmethionyl-leucyl-phenylalanine methylester (Sigma, USA), PMA – phorbol-12-myristate 13-acetate (Sigma, USA), 10 mg/ml of a number of competitors and agonists were always specific. Control cells were incubated in PBS only. The concentrations used were those which appeared to be optimal in the previous experiments (not shown). The cells were then washed and resuspended in PBS. No significant cytotoxicity of the substances tested was observed at the concentrations used.

Staining with labeled histamine. The specificity of histamine fluorescein binding to lymphocytes was investigated by competitive inhibition with either histamine dihydrochloride or histamine receptors’ antagonists or agonist. A hundred–fold excess of both the H₁ receptor agonist (Dimaprit) and the antagonist (Ranitidine) as well as the unlabeled histamine strongly limited binding of histamine fluorescein. However, high concentrations (>10⁻⁵ mol/l) of a number of commonly used H₁ receptors’ antagonist and agonists were shown to be toxic to the cells, so they could not be used for testing. We observed that histamine fluorescein did not bind to erythrocytes, which are known not to express histamine receptors on their surface.

The cells incubated with either specific or nonspecific stimuli or left in medium alone (negative control) were stained with labeled histamine. 10⁶ alive cells were suspended in 90 μl PBS and fluorescein-labeled histamine was added at the final concentration of 10⁻⁵ mol/l. The cell suspension was incubated for 15 min at room temperature in a dark chamber. The percentage of fluorescein-labeled cells was then counted using a fluorescence microscope (Olympus BX-50, magnification ×400).

Statistical analysis. Mean values and standard deviations (SD) were calculated. Differences were considered statistically significant with p<0.05 in Student’s *t*-test.

Results

As shown in Fig. 1, nonspecific stimulation (fMLP, LPS, PMA/ionomycin) of lymphocytes from both normal and allergic subjects resulted in a significant increase of histamine fluorescein binding (*p*<0.01). No significant difference in histamine receptor expression between normal and allergic subjects was observed. Figure 2 shows the effect of incubation of lymphocytes from allergic and normal subjects with various aller-
The percentage of histamine binding cells was determined on peripheral blood lymphocytes after incubation with either fMLP, LPS, PMA/lonomycin were stained with fluorescein-labeled histamine. The percentage of histamine binding cells was determined.

Discussion

The data in this study show that nonspecific activation of lymphocytes leads to an increase in histamine binding in both allergic and healthy subjects. In contrast, antigen-specific stimulation by allergen extract results in an increase of the percentage of histamine-binding cells only in allergic patients. It can be therefore in assumed that activation of cells, independent of the specific or nonspecific nature of the activation, leads to an increase of histamine receptor expression on lymphocytes. Our data are in line with other studies showing the modulation of the expression of histamine receptors by a variety of factors. Shibata et al. demonstrated that activation by concanavalin A (Con A) and IL-2 induced a significant increase of H1 histamine receptor expression on suppressor T lymphocytes. Iryosn et al. observed significantly increased expression of mRNA for the H2 histamine receptor in nasal mucosa of patients with dust mite allergy as compared to healthy controls. An increase in the number of histamine receptors on lymphocytes might have important clinical implications. Numerous studies indicate multiple immunoregulatory functions of histamine. Macrophages and lymphocytes have also been shown to synthesize histamine de novo through induced histidine decarboxylase. Histamine is capable of modulating several lymphocyte functions, including proliferation and secretion of active agents such as LCF (lymphocyte chemoattractant factor), IL-2, IFN-γ, or IL-5. Histamine is believed to limit the extent of inflammatory reactions by suppressing local cytokine synthesis by T cells, mast cells, synovial cells, chondrocytes or alveolar macrophages.

Histamine receptors are targets of anti-allergic therapy. Histamine type 1 receptor antagonists are widely used to control allergic symptoms. The effects of histamine are determined by the receptor type (H1, H2, H3) expressed on the target cell. In most systems, signaling through the H1 receptor has an enhancing effect, whereas triggering of the H2 receptor is suppressive.

Our results show that an increase of histamine receptor expression is one of the events accompanying both specific and nonspecific activation of lymphocytes, which in turn might enable the histamine to exert...
its regulatory functions and modulate immune response.

Acknowledgment. The authors would like to thank Mrs. Krystyna Baraniecka for helpful technical assistance.

References

24. ZAK-NEUMARK T., KRAUS-FILARSKA M., MALOLEPSZY J., NOWAK I. A., JANKOWSKA R. and NADOBNA G. (1998): Histamine receptor expression on lymphocytes and neutrophils is increased by both specific and non-specific activation. Allergy, 53 (suppl.) 129 (abst.)

Received in June 1999
Accepted in November 1999